environment: ubuntu 10.04 LTS 64bit
get some package
sudo apt-get install gnupg flex bison gperf build-essential \
zip curl zlib1g-dev libc6-dev lib32ncurses5-dev ia32-libs \
x11proto-core-dev libx11-dev lib32readline5-dev lib32z-dev \
libgl1-mesa-dev g++-multilib mingw32 tofrodos python-markdown \
libxml2-utils xsltproc
install git
first install some packages that git depends on:
sudo apt-get install libcurl4-gnutls-dev libexpat1-dev gettext libz-dev libssl-dev
get the new git source code from http://code.google.com/p/git-core/downloads/list.
download git-1.8.0.tar.gz
tar -xvf git-1.8.0.tar.gz
cd git-1.8.0
./configure
make
sudo make install
this will install git to /usr/local/bin/
get the kernel source code:
mkdir -p ~/android/kernel
cd ~/android/kernel
git clone https://android.googlesource.com/kernel/msm
check which version of kernel to checkout
mkdir ~/work/android/nexus4-kernel
cd ~/work/android/nexus4-kernel
git clone https://android.googlesource.com/device/lge/mako-kernel
cd mako-kernel
git log kernel
get the commit rev, which is e039dcb (nov 25, 2012), this number seems to correspond to the latest commit revision in https://android.googlesource.com/kernel/msm/android-msm-mako-3.4-jb-mr1
check out the kernel
cd ~/android/kernel/kernel_msm
git checkout <commit version>
note: commit version is e039dcb, which is the result of the git log kernel command in the previous step
install google toolchain
mkdir ~/android/toolchain
cd ~/android/toolchain
git clone https://android.googlesource.com/platform/prebuilts/gcc/linux-x86/arm/arm-linux-androideabi-4.6
add “export PATH=$PATH:~/android/toolchain/arm-linux-androideabi-4.6/bin” to ~/.profile and run source ~/.profile
setup environment variables and build
cd ~/android/kernel/kernel_msm
export ARCH=arm
export SUBARCH=arm
export CROSS_COMPILE=arm-linux-androideabi-
make mako_defconfig
make -j4
done
if you wanna thank me. go to google play and try out my app Wishlist :laugh:
https://play.google.com/store/apps/details?id=com.wish.wishlist
So with this I can make my own kernel for the Nexus 4? Hmm... will be nice to make one and get people to test it out for me lol.
I can edit the CPU, GPU, UV settings, etc? Is this only on Ubuntu or can it be done on Windows?
the kernel source is from google, but you can modify it as you wish. this is only for ubuntu. other linux environment will also work. but not windows.
You could change "make -j4" by "make -j$(grep -c ^processor /proc/cpuinfo)" ...
matt73300 said:
You could change "make -j4" by "make -j$(grep -c ^processor /proc/cpuinfo)" ...
Click to expand...
Click to collapse
that's handy to use.
But should the general rule of N in make -jN be twice the number of cpu core? for example, on my computer, I have two cores, so I use -j4.
yduck said:
that's handy to use.
But should the general rule of N in make -jN be twice the number of cpu core? for example, on my computer, I have two cores, so I use -j4.
Click to expand...
Click to collapse
Not really nice for lambda users. I think it's better when it written as I said (no need to know how many cores you have), or j# (and say replace # by 2xnumber_of_cores).
I have 8 cores on my computer, so I use j16 and it's much faster than j4, some people should know it
for some reason, the kernel I built cannot be booted.
when I did:
fastboot boot zImage
the phone stuck at the google logo.
any idea? I have seen other people in the forum built the kernel and booted it. there must be something wrong with the way I compiled the kernel, or the config is incorrect, or do I need to sign the kernel?
yduck said:
for some reason, the kernel I built cannot be booted.
when I did:
fastboot boot zImage
the phone stuck at the google logo.
any idea? I have seen other people in the forum built the kernel and booted it. there must be something wrong with the way I compiled the kernel, or the config is incorrect, or do I need to sign the kernel?
Click to expand...
Click to collapse
Is the zImage file the one found in "arch/arm/boot/zImage"? If so, then you can't use this directly in fastboot. You need to create a boot.img file.
Edit 2: You could possibly try this: " fastboot flash:raw boot <kernel> <ramdisk> ". I personally have not done, this. I created the boot.img file and flashed it.
Edit 3: Note that Edit 2 does perform a flash instead of boot, so be very wary of this. I recommend you create a boot.img file and use "fastboot boot boot.img" for testing --- it's safer that way.
dsana123 said:
Is the zImage file the one found in "arch/arm/boot/zImage"? If so, then you can't use this directly in fastboot. You need to create a boot.img file.
Edit 2: You could possibly try this: " fastboot flash:raw boot <kernel> <ramdisk> ". I personally have not done, this. I created the boot.img file and flashed it.
Edit 3: Note that Edit 2 does perform a flash instead of boot, so be very wary of this. I recommend you create a boot.img file and use "fastboot boot boot.img" for testing --- it's safer that way.
Click to expand...
Click to collapse
great suggestion. I just figured this out yesterday. as you said, fastboot boot does not work with just the zImage. it needs a boot.img.
so I created a newboot.img by packing my zImage and the ramdisk extracted from google's stock boot.img, and the newboot.img boots!
the command "fastboot flash:raw <kernel> <ramdisk>" seems simple to use. does it have an equivalent "fastboot boot: raw <kernel> <ramdisk"? so I don't need to worry about breaking my phone.
yduck said:
the command "fastboot flash:raw <kernel> <ramdisk>" seems simple to use. does it have an equivalent "fastboot boot: raw <kernel> <ramdisk"? so I don't need to worry about breaking my phone.
Click to expand...
Click to collapse
The fasboot.c source file at
https://android.googlesource.com/pl...8d27c72a03d56c1a36068a57f/fastboot/fastboot.c
indicates that there is no equivalent, although if you want to start modifying the fastboot.c code, it is probably easy enough to do so. Below is the relevant flash:raw code in fastboot.c:
} else if(!strcmp(*argv, "flash:raw")) {
char *pname = argv[1];
char *kname = argv[2];
char *rname = 0;
require(3);
if(argc > 3) {
rname = argv[3];
skip(4);
} else {
skip(3);
}
data = load_bootable_image(page_size, kname, rname, &sz, cmdline);
if (data == 0) die("cannot load bootable image");
fb_queue_flash(pname, data, sz);
Click to expand...
Click to collapse
From your post it sounds like you're using mkbootimg to create the boot image so you have what you need anyway (as long as you call mkbootimg with all the parameters corresponding to the boot header info from the boot image you extracted --- base offset, kernel offset, ramdisk offset, page offset, kernel command line , etc).
I've just added this guide to the Nexus 4 Complete Index
Sent from my GT-I9100 using xda premium
KidCarter93 said:
I've just added this guide to the Nexus 4 Complete Index
Sent from my GT-I9100 using xda premium
Click to expand...
Click to collapse
awesome! my post got into the index. I am so excited.:cyclops:
Thanks- although cdesai already made one
cdesai's thread here
yduck said:
great suggestion. I just figured this out yesterday. as you said, fastboot boot does not work with just the zImage. it needs a boot.img.
so I created a newboot.img by packing my zImage and the ramdisk extracted from google's stock boot.img, and the newboot.img boots!
the command "fastboot flash:raw <kernel> <ramdisk>" seems simple to use. does it have an equivalent "fastboot boot: raw <kernel> <ramdisk"? so I don't need to worry about breaking my phone.
Click to expand...
Click to collapse
I wonder if this is the correct way of making boot.img. I heard kernel image and ramdisk are related, if you modify and recompile the kernel and pack it with an old ramdisk, it may not boot. Is it true? what's the standard way of making boot.img? Is there a method to make our own ramdisk, instead of extracting it from google's stock boot.img?
yduck said:
setup environment variables and build
cd ~/android/kernel/kernel_msm
export ARCH=arm
export SUBARCH=arm
export CROSS_COMPILE=arm-linux-androideabi-
make mako_defconfig
make -j4
Click to expand...
Click to collapse
Based in part on this documentation, I have created a HOWTO on building the system.img and boot.img files (for fastboot) with a single "make" call. Checkout: http://nosemaj.org/howto-build-android-nexus-4 .
Hi, I have two strange problems when trying to compile the mako kernel source. My setup:
Ubuntu 10.04, 64-bit (succesfully compiled a GB kernel for another device with this setup, using Google gcc 4.4.3 and Linaro gcc 4.6.2)
Kernel source from https://android.googlesource.com/kernel/msm, HEAD @ 7ce11cd - this is the android-msm-mako-3.4-jb-mr1.1 branch, wich should be identical to the kernel shipped with 4.2.2
Google gcc 4.6.x from https://android.googlesource.com/platform/prebuilts/gcc/linux-x86/arm/arm-linux-androideabi-4.6, also jb-mr1.1-release
No changes to the source, yet
There are two problems when compiling. First, there is this error
Code:
error: the frame size of XXXX bytes is larger than 1024 bytes
which is caused by 'CONFIG_FRAME_WARN=1024'. This value is not set in mako_defconfig, but seems to be the default for gcc 4.6 and is written to the .config when running make mako_defconfig. I am able to bypass this by setting 'CONFIG_FRAME_WARN=2048', but question is: Why do I need to? The stock kernel on my device running 4.2.2 has been compiled with 'CONFIG_FRAME_WARN=1024'.
The second problem are warnings of the type
Code:
warning: unwinding may not work because EXIDX input section XX of arch/arm/.../YYY.o is not in EXIDX output section
These can be suppressed by setting '# CONFIG_ARM_UNWIND is not set' and adding 'CONFIG_FRAME_POINTER=y'. But again, the stock kernel is compiled with 'CONFIG_ARM_UNWIND=y' and obviously, the Google guys didn't have this problem. What's wrong with my setup?
add “export PATH=$PATH:~/android/toolchain/arm-linux-androideabi-4.6/bin” to ~/.profile and run source ~/.profile
I can't figure out why but I keep getting a no command 'add' found
Sent From My Paranoid Nexus
atomilluminati said:
add “export PATH=$PATH:~/android/toolchain/arm-linux-androideabi-4.6/bin” to ~/.profile and run source ~/.profile
I can't figure out why but I keep getting a no command 'add' found
Sent From My Paranoid Nexus
Click to expand...
Click to collapse
Thanks for the response. The path to the compiler is defined in my kernel build script. Do I have to change it in my .profile, too?
XDA_Bam said:
Thanks for the response. The path to the compiler is defined in my kernel build script. Do I have to change it in my .profile, too?
Click to expand...
Click to collapse
Actually this was supposed to be a question...my bad... I keep getting to that line in the OP's instructions and can't get past it
Sent From My Paranoid Nexus
atomilluminati said:
Actually this was supposed to be a question...my bad... I keep getting to that line in the OP's instructions and can't get past it
Sent From My Paranoid Nexus
Click to expand...
Click to collapse
Hehe Okay, the answer is that you have to open the ~/.profile and manually add in a text editor the line given in the OP. The file should be in your profile folder (/home/your_user_name/). After this, save, close and run
Code:
source ~/.profile
in the terminal. That should do it, as far as I understood.
Related
this thread is a short how to compile lge_star_kernel for cm7. as i am a noobie, if there is mistake, wrong, etc. please correct me.
there is cm kernel how to at http://wiki.cyanogenmod.com/wiki/Building_Kernel_from_source. i will make a few change from there for p990 (shown in bold)
benee in vorkKernel project posted how to compile vorkKernel at https://github.com/VorkTeam/vorkKernel-Scripts/wiki
git tutorial at http://gitref.org/creating/
lge-kernel-star is at http://github.com/CyanogenMod/lge-kernel-star/
# how to #
0. install required development support package : (see cm kernel how to)
0. assuming that cm rom source in ~/android/system and kernel source in ~/android/kernel for 1A and 1B or ~/android/system/kernel for 1C
1A. download kernel source : (first time only. you can use git for deltas only. see post #4 and follow step 1B instead)
> mkdir -p ~/android/kernel
> cd ~/android/kernel
> git clone git://github.com/CyanogenMod/lge-kernel-star.git
> cd lge-kernel-star
1B. update kernel source by git for new commits
> cd ~/android/kernel/lge-kernel-star
> git pull
1C. alternatively, set up git for cm repo
> cp local_manifest.xml ~/android/system/.repo/local_manifest.xml
> cd ~/android/system
> repo sync -j16 kernel/lge-kernel-star
> cd ~/android/system/kernel/lge-kernel-star
2. set up compiler prefix : we need "ARM EABI Toolchain" from prebuilt/linux-x86/toolchain/arm-eabi-4.4.0/bin/ in CM ROM source tree (4.4.3 also works, and i'm using it)
> export CCOMPILER=${HOME}/android/system/prebuilt/linux-x86/toolchain/arm-eabi-4.4.3/bin/arm-eabi-
3. copy config
> cp arch/arm/configs/star_cyanogenmod_defconfig .config
4. run configuration
> make ARCH=arm CROSS_COMPILE=$CCOMPILER oldconfig
5. build
> make ARCH=arm CROSS_COMPILE=$CCOMPILER -j`grep 'processor' /proc/cpuinfo | wc -l`
6. copy kernel and modules to cm source device folder (zImage is renamed as kernel)
> cp arch/arm/boot/zImage ~/android/system/device/lge/p990/kernel
> cp drivers/net/wireless/bcm4329/wireless.ko ~/android/system/device/lge/p990/prebuilt/wireless.ko
7. build CM ROM using the compiled kernel and modules
p.s. i use a bash script that does 2 to 6 automatically.
kernel source mod
# version : the current versioning that shows up in Settings > About phone > kernel version is a bit hard to follow if everybody compiles his/her own kernel. i customize lge-kernel-star/scripts/mkcompile_h and use date as version
46: DATETODAY=`date +"%Y%m%d"`
47: UTS_VERSION="$DATETODAY#$VERSION"
# compiled by : since i have a different username on linux system that i use, force it to show the name you want on it.
67: echo \#define LINUX_COMPILE_BY \"YOUR_NAME\"
68: echo \#define LINUX_COMPILE_HOST \"YOUR_MACHINE\"
here is my (simplified) shell script to compile kernel
Code:
#!/bin/sh
export CCOMPILER=${HOME}/android/system/prebuilt/linux-x86/toolchain/arm-eabi-4.4.3/bin/arm-eabi-
cd ${HOME}/android/kernel/lge-kernel-star || exit
${CCOMPILER}gcc --verbose || exit # show the cross compiler
\cp arch/arm/configs/star_cyanogenmod_defconfig .config
make ARCH=arm CROSS_COMPILE=$CCOMPILER oldconfig
make ARCH=arm CROSS_COMPILE=$CCOMPILER -j`grep 'processor' /proc/cpuinfo | wc -l`
edit: added a printout of manual checking of compiler in line 4
Following is from myfluxi
myfluxi said:
Hey, it's me again. Regarding the kernel thread, cloning the kernel ressources is not very efficient, instead add the git to your repository and just download deltas. Edit (typically) ~/android/.repo/local_manifest.xml by adding:
Code:
<project path="kernel/lge-kernel-star" name="CyanogenMod/lge-kernel-star.git" remote="github" revision="android-tegra-2.6.32" />
And a late happy birthday...
Cheers
Marc
Click to expand...
Click to collapse
Thanks for sharing. I suppose that's the next fun thing to learn.
Oh btw how do u add/remove kernel or init.rc commits?
Exactly what I looked for the other day. Thanks a lot pastime1971!!
This time I won't fail ;-)
EDIT: but I did... I guess it's the export that made me fail?
Code:
[email protected]:~/android/kernel/lge-kernel-star$ make ARCH=arm CROSS_COMPILE=$CCOMPILER -j`grep 'processor' /proc/cpuinfo | wc -l`
scripts/kconfig/conf -s arch/arm/Kconfig
CHK include/linux/version.h
SYMLINK include/asm -> include/asm-arm
make[1]: `include/asm-arm/mach-types.h' is up to date.
CHK include/linux/utsrelease.h
CC scripts/mod/empty.o
cc1: error: unrecognized command line option "-mlittle-endian"
cc1: error: unrecognized command line option "-mapcs"
cc1: error: unrecognized command line option "-mno-sched-prolog"
cc1: error: unrecognized command line option "-mno-thumb-interwork"
scripts/mod/empty.c:1:0: error: unknown ABI (aapcs-linux) for -mabi= switch
scripts/mod/empty.c:1:0: error: bad value (armv5t) for -march= switch
make[2]: *** [scripts/mod/empty.o] Error 1
make[1]: *** [scripts/mod] Error 2
make: *** [scripts] Error 2
temasek said:
Thanks for sharing. I suppose that's the next fun thing to learn.
Oh btw how do u add/remove kernel or init.rc commits?
Click to expand...
Click to collapse
the way i understand it is that boot.img is built w/ kernel (as prebuilt) and init ram disk when you brunch.
there are several init.rc involved. (see out/target/product/p990/root/)
for example w/ secure clock commit, init.p990.rc is from device/lge/p990/init.p990.rc
so, i build (brunch) cyanogen w/ kernel (zImage goes to device/lge/p990/kernel and modules go to device/lge/p990/prebuilt/) compiled as above and init.rc's changed in cm (you could cherry pick them, i suppose)
for kernel itself, i don't know if you can cherry pick them or not. typically, i just apply diff patches. (if someone know how to cherry pick kernel commits, please let us know.)
pastime1971 said:
the way i understand it is that boot.img is built w/ kernel (as prebuilt) and init ram disk when you brunch.
there are several init.rc involved. (see out/target/product/p990/root/)
for example w/ secure clock commit, init.p990.rc is from device/lge/p990/init.p990.rc
so, i build (brunch) cyanogen w/ kernel (zImage goes to device/lge/p990/kernel and modules go to device/lge/p990/prebuilt/) compiled as above and init.rc's changed in cm (you could cherry pick them, i suppose)
for kernel itself, i don't know if you can cherry pick them or not. typically, i just apply diff patches. (if someone know how to cherry pick kernel commits, please let us know.)
Click to expand...
Click to collapse
Thanks.
I'll have a go and it when I'm free. Good to have u onboard.
sibbor said:
Exactly what I looked for the other day. Thanks a lot pastime1971!!
This time I won't fail ;-)
EDIT: but I did... I guess it's the export that made me fail?
Click to expand...
Click to collapse
can you "echo $CCOMPILER" or "env | grep CCOMPILER" before make to ensure that it is exported correctly ?
it re-defines to use those arm-eabi-gcc and others. see lge-kernel-star/Makefile, line 309 : CC = $(CROSS_COMPILE)gcc
without it, you would be calling gcc which doesn't understand -mlittle-endian or other options in that log
edit: i commented out the line of export from my shell script, and i get the exact same error message. it must be export issue.
edit: you should get the following when you do "${CCOMPILER}gcc --verbose"
> ${CCOMPILER}gcc --verbose
Using built-in specs.
Target: arm-eabi
Configured with: /home/jingyu/projects/gcc/android-toolchainsrc/build/../gcc/gcc-4.4.3/configure --prefix=/usr/local --target=arm-eabi --host=x86_64-linux-gnu --build=x86_64-linux-gnu --with-gnu-as --with-gnu-ld --enable-languages=c,c++ --with-gmp=/home/jingyu/projects/gcc/toolchain_build/gingerbreadobj/temp-install --with-mpfr=/home/jingyu/projects/gcc/toolchain_build/gingerbreadobj/temp-install --disable-libssp --enable-threads --disable-nls --disable-libmudflap --disable-libgomp --disable-libstdc__-v3 --disable-sjlj-exceptions --disable-shared --disable-tls --with-float=soft --with-fpu=vfp --with-arch=armv5te --enable-target-optspace --with-abi=aapcs --with-gcc-version=4.4.3 --with-binutils-version=2.19 --with-gmp-version=4.2.4 --with-mpfr-version=2.4.1 --with-gdb-version=7.1.x --with-arch=armv5te --with-multilib-list=mandroid --with-sysroot=/usr/local/google/home/android/cupcake_rel_root --enable-gold=both/gold --program-transform-name='s&^&arm-eabi-&'
Thread model: single
myfluxi said:
pastime1971 said:
Dear Marc,
Do you know how to set up local copy of git for lge-kernel-star ?
I can add that line to cm/.repo/local_manifest.xml and it works.
But I would like to have a separate one just for kernel.
I can copy .repo from cm and strip it down, and leave just kernel. That works as well.
But I was wondering if there is a better way to do it. I tried to "repo init -u git://github.com/CyanogenMod/lge-kernel-star.git -b android-tegra-2.6.32" but it fails w/ the following message: #error message deleted#
besides, the source goes into .repo/manifests/
maybe I need to use git command directly ?
regards,
pastime
Click to expand...
Click to collapse
Hey,
if you just want to be on top of things of our beloved lge-kernel-star, maybe just:
git clone git://github.com/CyanogenMod/lge-kernel-star.git
and then sync with
cd lge-kernel-star
git [pull | fetch]
What do you think?
Cheers
Marc
Click to expand...
Click to collapse
thanks for your advice. i updated the first post accordingly.
edit: w/ today's commit, i tried "git fetch", and nothing happens. tried "git pull" and it downloads new commits. updated the first post. comment welcome if you know the difference between fetch and pull.
Managed to build the kernel now. Will see if my freshly compiled Kang include it or not. If it's included I think it's magic... because I had to create the folders manually where I copied the zImage. Feels like it should already have been there, no?
Hey, pastime, you've got an error in point #6:
Code:
cp arch/arm/boot/zImage ~/andoid/system/device/lge/p990/kernel
should be
Code:
cp arch/arm/boot/zImage ~/and[B]r[/B]oid/system/device/lge/p990/kernel
sibbor said:
Managed to build the kernel now. Will see if my freshly compiled Kang include it or not. If it's included I think it's magic... because I had to create the folders manually where I copied the zImage. Feels like it should already have been there, no?
Hey, pastime, you've got an error in point #6:
Code:
cp arch/arm/boot/zImage ~/andoid/system/device/lge/p990/kernel
should be
Code:
cp arch/arm/boot/zImage ~/and[B]r[/B]oid/system/device/lge/p990/kernel
Click to expand...
Click to collapse
omg, sorry about the typo.... i manually typed those...
glad it is working for you now
when your kernel is included in your kang, you would see your name and host in "About phone"
edit: typo corrected
edit: i just read your comment on the folder... it should be there already, isn't it ? it is under YOUR_CYANOGEN_ROM_SOURCE_FOLDER/device/lge/p990/
edit: device/lge/p990/kernel is a file, not a folder. "zImage" is renamed to "kernel" in that folder (p990). wireless.ko is the same name in p990/prebuilt/
pastime1971 said:
omg, sorry about the typo.... i manually typed those...
glad it is working for you now
when your kernel is included in your kang, you would see your name and host in "About phone"
edit: typo corrected
edit: i just read your comment on the folder... it should be there already, isn't it ? it is under YOUR_CYANOGEN_ROM_SOURCE_FOLDER/device/lge/p990/
edit: device/lge/p990/kernel is a file, not a folder. "zImage" is renamed to "kernel" in that folder (p990). wireless.ko is the same name in p990/prebuilt/
Click to expand...
Click to collapse
Ah, yeah. Thanks!
Sure, it's working for me. [email protected] Sweet stuff! Thanks for the brilliant guide pastime.
Making my own shell scripts now I learn the whole process a bit better too, from A to Z ;-)
sibbor said:
Ah, yeah. Thanks!
Sure, it's working for me. [email protected] Sweet stuff! Thanks for the brilliant guide pastime.
Making my own shell scripts now I learn the whole process a bit better too, from A to Z ;-)
Click to expand...
Click to collapse
you are welcome.
enlighten us if you find a way to improve it, too.
i moved on to using "git pull", thanks to myfluxi
I did another "pull request" on kernel regarding touch screen.
Not sure if I did it right this time, it seems somehow different from last.
Let say you have a old pull request.
How do I withdraw it, update to the latest, and make a new pull request? (Assuming that is a right procedure.) I had to delete the old one, and started from the scratch. Doesn't feel right.
If you're only interested in the kernel, you can build just the boot image if you like:
make -j4 bootimage
Only takes a few seconds really.
Rusty! said:
If you're only interested in the kernel, you can build just the boot image if you like:
make -j4 bootimage
Only takes a few seconds really.
Click to expand...
Click to collapse
i imagined that something like that would be possible.
never knew how...
thanks, rusty
Rusty! said:
If you're only interested in the kernel, you can build just the boot image if you like:
make -j4 bootimage
Only takes a few seconds really.
Click to expand...
Click to collapse
Could u be a little more specific? I tried that command but it builds generic one... Am I missing something here? I think I am....
Insights pls?
make clean
. build/envsetup.sh
lunch p990-eng
make -j4 bootimage
Rusty! said:
make clean
. build/envsetup.sh
lunch p990-user
make -j4 bootimage
Click to expand...
Click to collapse
Cool.
The boot.img created in a blaze. But this method is only applicable if the kernel is committed? What if it is just committed in the star kernel git but yet to be merged to cm, then we do we have to create a zImage and then compile CM ?
Thanks.....
I have like 3 private messages per day asking help on the kernel so I decided to write a short tutorial on how to build your own CM7 kernel.
Requirements:
- Linux distro such as Ubuntu (recommended).
- Time and 10 GB.
Instructions:
(Instructions tailored for Ubuntu, somewhat similar for other distros)
1. First we need to download some stuff, open your terminal and type these commands:
Code:
sudo add-apt-repository "deb http://archive.canonical.com/ lucid partner"
sudo apt-get update
sudo apt-get install git-core gnupg sun-java6-jdk flex bison gperf libsdl-dev libesd0-dev libwxgtk2.6-dev build-essential zip curl libncurses5-dev zlib1g-dev gcc-arm-linux-gnueabi
Toolchain is already included.
If you're in a 64-bit machine, run this command too:
Code:
sudo apt-get install ia32-libs lib32z1-dev lib32ncurses5-dev gcc-multilib g++-multilib
2. Open terminal, navigate to a folder where you want the kernel source and type this:
Code:
git clone git://github.com/CyanogenMod/lge-kernel-sniper.git
After the download, navigate (in the terminal of course) to the new folder.
3. Now we need to edit the Makefile in that newly created folder, open it. Look for the flags:
Code:
ARCH ?= ...
CROSS_COMPILE ?= ...
Change to:
Code:
ARCH ?= arm
CROSS_COMPILE ?= /usr/bin/arm-linux-gnueabi-
Save and close.
4. Now we need a .config file. Run this command (the terminal must be in that kernel folder where Makefile is):
Code:
make ARCH=arm cyanogenmod_hub_defconfig
Voilá, you can find the .config in the folder (control+h to show hidden files).
5. Edit the kernel as you want. You can grab some ideas from my incomplete source of knzo kernel for CM7: http://github.com/mnlsrv/kernel
6. Let's compile it! Run the command:
Code:
make -j4
In the end you'll get a zImage and .ko files (modules).
7. Now use unpackbootimg or Dsixda kitchen to unpack CM7's boot.img (you can extract it from a nightly), replace zImage with yours and repack.
8. Now you need to flash the boot.img; just use the zip for knzo kernel and replace the boot.img for yours; replace the modules too (/system/lib/modules).
9. Flash and enjoy.
Hope I didn't forget to mention any step.
I am not an active dev, but would like to thank you at the first place. Any beginner in android development will surely be grateful to this simple step wise guide....
A few tips:
Custom governors go into /drivers/cpufreq.
Custom I/O schedulers go into /block/.
For each addition you need to change Kconfig and Makefile. Then the .config will need to be updated and this is automatic when you run the make command. Open and edit .config when you're more familiar with all of it.
Here https://github.com/mnlsrv/kernel/commits/master you can see some commits (changes) I did to the kernel and if you click on one of it, it will show exactly how and which files were changed.
Only a remark:
- To completely add a governor, you have to edit /include/linux/cpufreq.c too in order to set a different default governor without compile errors.
if i have more time ,i'll have a try
thank you knzo,you did a great job!
So kind of you knzo... I'll definitely try this if I still have black....
However... Black is still the best phone I ever had.... miss my black very much...
Keep the good works guys, i keep my eyes to this community, wondering how far this device will go....
Beginners guide to making kernel images
Here I have logged down my own experiences with making Optimus Black kernel binary. Being a Windows person myself I know how troublesome and confusing a development under MinGW can get so I decided to do it under VirtualBox instead. I sincerely hope that the steps described below are a good reference to everybody who is interested in modding his or her own kernel but hasn't gotten over the administrative burden yet. Written as from beginner to beginner I tried to be as concise as possible, leaving out nothing important and everything optional. Just enough to get from zero to updated kernel on your phone.
1. Prepare the environment
Download VirtualBox from https://www.virtualbox.org/wiki/Downloads and install it. I downloaded version 4.1.6 which was the latest version at the moment (http://download.virtualbox.org/virtualbox/4.1.6/VirtualBox-4.1.6-74713-Win.exe)
Download Ubuntu from http://www.ubuntu.com/download/ubuntu/download and install it under VirtualBox. I downloaded latest 32-bit version (http://www.ubuntu.com/start-download?distro=desktop&bits=32&release=latest). Install Guest Additions afterwards as well if you want to use clipboard between host and guest operating systems.
Open terminal and create a folder under your home directory for all the things involved.
Code:
mkdir android
cd android
Install Git and get the kernel source. I had to use http protocol as git protocol was blocked for me.
Code:
sudo apt-get install git
git clone http://github.com/CyanogenMod/lge-kernel-sniper.git
2. This is the part where you change the code
Done? Move to the next step and cross your fingers. For the purpose of this guide we are not changing anything.
3. Make the kernel image
Go to kernel directory
Code:
cd lge-kernel-sniper
Install Arm toolchain and make the kernel image
Code:
sudo apt-get install gcc-arm-linux-gnueabi lzma
export ARCH=arm
export CROSS_COMPILE=/usr/bin/arm-linux-gnueabi-
make cyanogenmod_hub_defconfig
make
There was one thing I had to modify before make completed without errors. Inside drivers/net/wireless/bcm4329 I had to remove -Werror from the Makefile because the warnings were considered as errors otherwise. If everything goes well you'll find zImage under arch/arm/boot directory.
4. Create and deploy the update image (see also http://forum.xda-developers.com/showthread.php?t=1350679)
Download Kernel Injector update image template
Code:
cd ..
wget -O output.zip http://forum.xda-developers.com/attachment.php?attachmentid=785468
Update zImage inside update.zip
Code:
zip -j update.zip lge-kernel-sniper/arch/arm/boot/zImage
Update modules inside update.zip
Code:
mkdir modules
find lge-kernel-sniper/ -name "*.ko" -exec cp {} modules \;
zip -d update modules/\*
zip update modules/*
Use your favourite method of getting the update.zip to your phone's SD card, boot into recovery and flash.
Good luck! And as always - comments and suggestions are most welcome!
- Aprold
For any CM10 ROM, except new bootloader one, hackfest, and CM10.1
This tutorial shows you how to build CM10 kernel from RC and the CM team's source(it is their work), and using wkpark's ramhack patch or other patches
If you are uncomfortable in building the kernel, you use my flashable sample kernel at the end of the post, which uses 56 MB RAM hack.
Pre-requistes:
A Linux system
An internet connectionc
Some time and patience
But the time required for downloading resources, and building once everything is set up, is only a fraction of the time required for a full CM10 ROM
You can follow this guide, with or without having built CM10 following Raum1807's excellent CM10 building guide. At one of the places, the difference occurs whether you had built CM10 before or not, and I have listed it at that place
For a first time build, you need to follow all the steps, but 2nd time onwards, you can skip to the build step or RAM hack setting step
Instructions:
STEP 1: SETTING UP THE ENVIRONMENT
Install any CM10 ROM on the device (old bootloader, non-hackfest, non-CM10.1 one)
If you already have CM10 environment set up, skip to "Create an environment variable..." part
Install development support packages:
Debian based Linux distributions (like Ubuntu)
64bit systems:
Code:
sudo apt-get install git-core gnupg flex bison gperf build-essential \
zip curl libc6-dev libncurses5-dev:i386 x11proto-core-dev \
libx11-dev:i386 libreadline6-dev:i386 libgl1-mesa-glx:i386 \
libgl1-mesa-dev g++-multilib mingw32 openjdk-6-jdk tofrodos \
python-markdown libxml2-utils schedtool pngcrush xsltproc zlib1g-dev:i386
then
Code:
sudo ln -s /usr/lib/i386-linux-gnu/mesa/libGL.so.1 /usr/lib/i386-linux-gnu/libGL.so
Red Hat based Linux distributions
32bit and 64bit systems:
git gnupg java-1.6.0-openjdk-devel flex bison gperf SDL-devel esound-devel wxGTK-devel zip curl ncurses-devel zlib-devel gcc-c++ glibc-devel
64bit only:
glibc-devel.i686 libstdc++.i686 zlib-devel.i686 ncurses-devel.i686
Setting up Java (thanks to Raum for the java setup guide)
You need a Java Development Kit for building CM10. Recommended is the SUN JDK 6. As of writing the most recent version is SUN JDK 6 Update 37.
1. Download the jdk-6u37-linux-i586.bin from the Oracle/Sun Java Download Area. If you are on 64-bit Ubuntu as I am, you should grab jdk-6u37-linux-x64.bin.
2. Make the bin file executable:
Code:
$ chmod +x jdk-6u37-linux-x64.bin
3. Extract the bin file:
Code:
$ ./jdk-6u37-linux-x64.bin
4. Move the extracted folder to this this location:
Code:
$ sudo mv jdk1.6.0_37 /usr/lib/jvm/./jdk-6u37-linux-x64.bin
5. Install the new Java source in system:
Code:
$ sudo update-alternatives --install /usr/bin/javac javac /usr/lib/jvm/jdk-6u37-linux-x64.bin/bin/javac 1
$ sudo update-alternatives --install /usr/bin/java java /usr/lib/jvm/jdk-6u37-linux-x64.bin/bin/java 1
$ sudo update-alternatives --install /usr/bin/javaws javaws /usr/lib/jvm/jdk-6u37-linux-x64.bin/bin/javaws 1
$ sudo update-alternatives --install /usr/bin/javadoc javadoc /usr/lib/jvm/jdk-6u37-linux-x64.bin/bin/javadoc 1
$ sudo update-alternatives --install /usr/bin/javah javah /usr/lib/jvm/jdk-6u37-linux-x64.bin/bin/javah 1
$ sudo update-alternatives --install /usr/bin/javap javap /usr/lib/jvm/jdk-6u37-linux-x64.bin/bin/javap 1
$ sudo update-alternatives --install /usr/bin/jar jar /usr/lib/jvm/jdk-6u37-linux-x64.bin/bin/jar 1
6. Select the default Java version for your system:
Code:
$ sudo update-alternatives --config javac
$ sudo update-alternatives --config java
$ sudo update-alternatives --config javaws
$ sudo update-alternatives --config javadoc
$ sudo update-alternatives --config javah
$ sudo update-alternatives --config javap
$ sudo update-alternatives --config jar
7. Check Java version:
Code:
$ java -version
8. Verify the symlinks. Javac, Java, Javaws, Javadoc, Javah, Javap and Jar should all point to the new Java location and version:
Code:
$ ls -la /etc/alternatives/java* && ls -la /etc/alternatives/jar
Now,
If you have CM10 source fetched already (if you have built cm10)
If the directory name where the cm10 source exists is "cm10" (as in Raum's building guide)
Create an environment variable denoting the location of the android toolchain as follows:
Code:
export CCOMPILER=${HOME}/cm10/prebuilt/linux-x86/toolchain/arm-eabi-4.4.3/bin/arm-eabi-
Or else, replace the path/name if yours is different
(If your arm-eabi version is not 4.4.3, check the folder name and change it accordingly)
If you do not have cm10 source on your pc, then you need to download the ARM EABI Toolchain separately
Download link, ready to extract
If above does not work, download from official site here
Download and extract then, create an environment variable denoting the location of the toolchain as follows:
Code:
export CCOMPILER=[extraction directory]/bin/arm-eabi-
Download Kernel Source Code:
Code:
mkdir -p ~/kernel
cd ~/kernel
Now download RC's CM10 kernel source
In terminal, do
Old bootloader:
Code:
git clone git://github.com/CyanogenMod/lge-kernel-star.git -b jellybean
New bootloader:
Here, pengus77 has made the necessary changes in his repo, so we fetch from that
Code:
git clone git://github.com/pengus77/lge-kernel-star.git
Thus, there should be a folder named "lge-kernel-star" inside /kernel folder
Then in terminal, cd to that directory "lge-kernel-star"
Code:
cd lge-kernel-star
Getting the config file
The next step is to copy the file "/kernel/lge-kernel-star/arch/arm/configs/cyanogenmod_p990_defconfig" to "/kernel/lge-kernel-star and rename it to ".config"
using the command:
Code:
cp arch/arm/configs/cyanogenmod_p990_defconfig .config
(Thanks to tonyp for the tip!)
STEP 2: CONFIGURATION
Configure the build:
Code:
make ARCH=arm CROSS_COMPILE=$CCOMPILER oldconfig
If it happens to ask anything, just accept the defaults at every step by pressing enter.
STEP 3: APPLYING PATCHES
Applying patches like wkpark's RAM hack patch
If you skip this step, the kernel will work, but you'll have a completely stock kernel without RAM hack or other tweaks
Download wkpark's two patches from here and here, and put them in your /kernel directory
Code:
cd ~/kernel
Now to apply the patches, we use the patch command like this:
Code:
patch -Np1 -d lge-kernel-star < patchname.patch
(replace patchname with name of the patch file)
Here, -N is for ignoring patches that seem to be already applied or reversed
p<num> Strip the smallest prefix containing num(here num=1) leading slashes from each file name found in the patch file
In this case, num=1 according to the path names in wkpark's patch, and in a lot of cases, the value of 1 is common
-d is to change to the directory immediately, before doing anything else
You need to apply wkpark's two patches one by one (0001-..., then bootloader-...)
If you get errors while patching, if they are basic errors like file not found etc. then you should manage to fix it yourself.
But if you get errors like "HUNK ... failed",
try
Code:
patch -Np1 --ignore-whitespace -d lge-kernel-star < patchname.patch
A "HUNK ignored" is ok, if patch was attempted previously, since that file might have been successfully patched last time
if a HUNK still fails, then read the troubleshooting guide
Setting RAM hack size (If you skipped the above patching step, dont do this)
wkpark's patch makes it possible for you to set ramhack size in kernel command line parameter.
The cmdline parameter has to have the full boot.img command line parameters, which you can obtain from dmesg. I have done it for you, so you can save time on that
Here's how it looks for the old bootloader: (for the new one, ignore this)
Code:
<5>[70:01:01 00:00:00.000] Kernel command line: loglevel=0 muic_state=1 CRC=10203036179a93 brdrev=1.0 uniqueid=37c7006421f6097 video=tegrafb console=ttyS0,115200n8 usbcore.old_scheme_first=1 tegraboot=sdmmc tegrapart=recovery:35e00:2800:800,linux:34700:1000:800,mbr:400:200:800,system:600:2bc00:800,cache:2c200:8000:800,misc:34200:400:800,userdata:38700:c0000:800 [email protected] vmalloc=128M androidboot.mode=normal androidboot.hardware=star androidboot.serialno=37c7006421f6097
Paste the line starting from loglevel=0 till the end (serialno) into .config file in lge-kernel-star folder in
CONFIG_CMDLINE="<here>"
Insert a carveout size in between vmalloc and androidboot.mode
Determing carveout size: carveout=<152 - RAM hack size>M
For example, if RAM hack size is 56, then carveout is 96M
So in that case, the cmdline is like this:
old bootloader:
Code:
CONFIG_CMDLINE="loglevel=0 muic_state=1 CRC=10203036179a93 brdrev=1.0 uniqueid=37c7006421f6097 video=tegrafb console=ttyS0,115200n8 usbcore.old_scheme_first=1 tegraboot=sdmmc tegrapart=recovery:35e00:2800:800,linux:34700:1000:800,mbr:400:200:800,system:600:2bc00:800,cache:2c200:8000:800,misc:34200:400:800,userdata:38700:c0000:800 [email protected] vmalloc=128M carveout=96M androidboot.mode=normal androidboot.hardware=star androidboot.serialno=37c7006421f6097"
new bootloader:
Code:
CONFIG_CMDLINE="tegraid=20.1.4.0.0 [email protected] carveout=152M android.commchip=0 vmalloc=128M androidboot.serialno=037c7006421f6097 video=tegrafb no_console_suspend=1 console=ttyS0,115200n8 debug_uartport=lsport,-3 androidboot.mode=normal usbcore.old_scheme_first=1 [email protected] [email protected] muic_state=0 tegraboot=sdmmc tegrapart=recovery:35e00:2800:800,boot:34700:1000:800,mbr:400:200:800,persist:600:2bc00:800,cache:2c200:7f00:800,misc:34200:400:800,userdata:38700:c0000:800,bcttable:0:600:800,bootloader:100:300:800,data/ve:f8800:1400:800,system:34c000:40000:800 "
and save the file
Dont set carveout too low, or else some gpu-intensive stuff may not work properly.
STEP 4: BUILDING THE KERNEL
In terminal,
Code:
cd ~/kernel/lge-kernel-star
Code:
make ARCH=arm CROSS_COMPILE=$CCOMPILER -j`grep 'processor' /proc/cpuinfo | wc -l`
This step may take a while, depending on your computer. Took ~5-10 mins for the first build for me, and ~1 min for the second build onwards.
If it asks in the terminal "use default config?" then say "y", if not, then ignore this
If you get some error and the building aborts within a few seconds, try the "Create environment variable part" again, and then return back directly to the build step.
After it is done, you should have a kernel stored in ~/kernel/lge-kernel-star/arch/arm/boot/zImage
Preparing the flashable zip for the kernel
Some compiled modules need to be included so that problems like wifi not switching on dont occur.
They are:
drivers/misc/bthid/bthid.ko
drivers/scsi/scsi_wait_scan.ko
drivers/net/wireless/bcm4329/wireless.ko
They will be used while preparing the flashable zip below.
Thanks to feav's compiled modules and benee's anykernel updater for star, all this is ready-made and you can simply:
Download the sample kernel zip attached below and replace /kernel/zImage and and the above modules in system/lib/modules/hw in that with yours, edit updater-script if you want.
Your flashable zip is now ready
STEP 5: FLASHING AND TESTING THE KERNEL
Put the sample kernel below as a backup in case your kernel does not boot and you need a working phone immediately.
Flash the kernel in recovery, wipe cache, dalvik cache and reboot.
If the phone goes past the LG logo screen(s) and into the bootscreen of the ROM, then it should work
Then you can check "kernel version" in settings->about phone to see your kernel information,
and you can see the new RAM size (which should be 342 MB + RAM hack size) in some app like battery dr saver, or antutu benchmark's system info.
If it doesnt work, make sure you have followed the entire guide properly and then ask queries
If you want to revert to another kernel, flash that kernel in recovery, or for stock kernel, flash your ROM.
Keeping kernel source up to date (for building again later after RC has made changes to the source):
Code:
cd ~/kernel/lge-kernel-star
git pull
This will update your source with the latest commits by RC. Then you can rebuild the kernel by doing the "create environment variable" and then skip directly to the build stage
Standard disclaimer:
I am not responsible if anything goes wrong with your phone or anything else.
Credits:
aremcee/RC and the rest of the CM team for all their work. This is their kernel you are building
wkpark for his valuable contributions, including the ramhack patches and cracking the new bootloader
benee for his Anykernel updater for star, and other tweaks
feav for his compiled wifi modules
pengus77 for the work to make it suitable for the new bootloader
Download links for sample kernels:
SAMPLE 56 MB RAMHACK KERNEL
SAMPLE 32 MB RAMHACK KERNEL
SAMPLE 24 MB RAMHACK KERNEL
Troubleshooting guide:
1. Patch failure
HUNK failed means that a particular file was not patched to some problem. In this case, a .rej file is saved in the same folder as the file to be patched, and it contains the stuff not patched.
Do not neglect "failed" hunk since it means a partially applied patch(some files patched, some files not), and may cause problems. "Ignored hunk" is ok, if the patch had been attempted before on a file and had succeeded on that file last time.
To manually patch the failed hunk, go that file where the hunk failed (has same name as .rej file without .rej extension)
For example, if .rej file is board-star.c.rej, and it contains the following sample lines (look for lines beginning with '+' and remove the + before adding, similar for -) go to board-star.c, and add the lines manually like this:
Code:
#if defined (CONFIG_STAR_REBOOT_MONITOR) || defined (CONFIG_BSSQ_REBOOT_MONITOR)
#define RAM_RESERVED_SIZE 100*1024
/* Force the reserved_buffer to be at its old (Froyo/GB) location
for reboot to work with the older bootloader */
if (strstr(saved_command_line, "brdrev=")) {
extern void *reserved_buffer;
pr_info("The older bootloader detected\n");
if (memblock_end_of_DRAM() > 0x17f80000) {
if (memblock_reserve(0x17f80000, RAM_RESERVED_SIZE)) {
pr_err("Fail to get reserved_buffer for the older bootloader\n");
} else {
pr_info("Change reserved_buffer for the older bootloader\n");
reserved_buffer = phys_to_virt(0x17f80000);
}
} else {
pr_info("Change reserved_buffer\n");
reserved_buffer = ioremap(0x17f80000, RAM_RESERVED_SIZE);
}
}
#endif
This was in the .rej file, and is to be added immediately after
Code:
#if defined(CONFIG_LGE_BROADCAST_TDMB)
star_dmb_init();
#endif /* CONFIG_LGE_BROADCAST */
in board-star.c (and before the next #if defined or closing bracket)
Similarly, the - lines to be deleted and + lines are to be added in that failed hunk file
(do this manual stuff only if hunk fails)
2. If ramhack kernel fails, but normal kernel works:
From your pc, in terminal do
adb shell dmesg > dmesg.txt
or from your phone, in android terminal emulator, do
dmesg > /sdcard/dmesg.txt
Copy it from your dmesg.txt starting from loglevel=0 till the end (serialno)
Look for a line in dmesg.txt which resembles this:
Code:
<5>[70:01:01 00:00:00.000] Kernel command line: loglevel=0 muic_state=1 CRC=10203036179a93 brdrev=1.0 uniqueid=37c7006421f6097 video=tegrafb console=ttyS0,115200n8 usbcore.old_scheme_first=1 tegraboot=sdmmc tegrapart=recovery:35e00:2800:800,linux:34700:1000:800,mbr:400:200:800,system:600:2bc00:800,cache:2c200:8000:800,misc:34200:400:800,userdata:38700:c0000:800 [email protected] vmalloc=128M androidboot.mode=normal androidboot.hardware=star androidboot.serialno=37c7006421f6097
Use your own phone's parameters instead of this and then set carveout size.
3. Problem with config file:
Pulling kernel config from device:
You need to retrieve a working kernel config from the device, and unzip it.
For that, connect your phone to your pc, enable USB debugging if it was disabled, and then in terminal
Code:
adb pull /proc/config.gz ~/kernel/lge-star-kernel-jellybean/config.gz
cat config.gz | gunzip > .config
Alternatively, you can pull the .config from the newest boot.img
Code:
scripts/extract-ikconfig boot.img > .config
Changes and updates:
25/12/12:
Added changes to be made for the new bootloader (in red color)
24/12/12:
Updated the guide, added some fixes and changes
22/12/12:
Slightly modified version of wkpark's 2nd patch (bootloader one) which may possibly fix one of the errors and may remove need for manually adding some lines
Last one
rugglez.....you rock mate....
I am not sure if I will really do something as I am getting old(lolz) and if I understand enough....
but thanks mate, for keeping spirits alive for this device
rugglez,
Did you see these posts: http://forum.xda-developers.com/showpost.php?p=34600723&postcount=189
http://forum.xda-developers.com/showpost.php?p=34601277&postcount=192
Did you experienced any ploblem with USB?
SREEPRAJAY said:
rugglez.....you rock mate....
I am not sure if I will really do something as I am getting old(lolz) and if I understand enough....
but thanks mate, for keeping spirits alive for this device
Click to expand...
Click to collapse
There are always some things worth experiencing once in life, like if you are an Android user, building a ROM and a kernel. You have experienced it with your wonderful AF kernel, thats important
feav said:
rugglez,
Did you see these posts: http://forum.xda-developers.com/showpost.php?p=34600723&postcount=189
http://forum.xda-developers.com/showpost.php?p=34601277&postcount=192
Did you experienced any ploblem with USB?
Click to expand...
Click to collapse
USB works fine, both adb and mass storage
This guide may seem intimidating, but trust me, once you complete it the first time, you'll find it really simple from the next build onwards.
Uploaded a slightly modified version of wkpark's 2nd patch (bootloader one) which may possibly fix one of the errors and may remove need for manually adding some lines. Updated link in OP and attached here too.
I tried the sample kernel and my camera stops functioning and so with other apps such as contacts, they don't start at all. Im on dec 20 nightly. Could it be the ramhack size? Maybe 32mb will suffice. Just saying.
Thanks to this, will probably try this next week..
aldyu said:
I tried the sample kernel and my camera stops functioning and so with other apps such as contacts, they don't start at all. Im on dec 20 nightly. Could it be the ramhack size? Maybe 32mb will suffice. Just saying.
Thanks to this, will probably try this next week..
Click to expand...
Click to collapse
Uploaded 32 MB ram hack kernel for those having problem with camera, try it out.
Download link 32MB RH
Update:
Added 24MB version too. Here you go:
24MB RH kernel
Thanks rugglez, 32 mb rh is ok so far, cm10 is way smoother and can still play nfs most wanted. Btw, can you apply the patch for double lg logo too by wkpark?
Sent from my P990-CM10
After installing the new kernel, if some apps still don't work or there any lag, disable "force gpu rendering" and "disable hardware overlays" in developer settings.
Thank you for your work! Just flashed the 32mb version without any problem. On cm7 the 48mb ramhack was the biggest without breaking 720p recording. Maybe you should give it a try!
Uhm download a kernel zip file?
How about git clone?
Sent from my Nexus 7 using xda app-developers app
tonyp said:
Uhm download a kernel zip file?
How about git clone?
Sent from my Nexus 7 using xda app-developers app
Click to expand...
Click to collapse
Git clone size = ~440mb
Zip size = 120mb which extracts to that same size
Takes more time to download more for people like me with slow Internet, no other reason
Hi rugglez, got the ff. error when installing the required packages, Im on ubuntu 12.10 x64.
Note, selecting 'libsdl1.2-dev' instead of 'libsdl-dev'
Package sun-java6-jdk is not available, but is referred to by another package.
This may mean that the package is missing, has been obsoleted, or
is only available from another source
E: Package 'sun-java6-jdk' has no installation candidate
E: Unable to locate package libwxgtk2.6-dev
E: Couldn't find any package by regex 'libwxgtk2.6-dev'
How to fix? Thanks.
aldyu said:
Hi rugglez, got the ff. error when installing the required packages, Im on ubuntu 12.10 x64.
Note, selecting 'libsdl1.2-dev' instead of 'libsdl-dev'
Package sun-java6-jdk is not available, but is referred to by another package.
This may mean that the package is missing, has been obsoleted, or
is only available from another source
E: Package 'sun-java6-jdk' has no installation candidate
E: Unable to locate package libwxgtk2.6-dev
E: Couldn't find any package by regex 'libwxgtk2.6-dev'
How to fix? Thanks.
Click to expand...
Click to collapse
Can you install the dependencies from Raum's CM10 building thread here?
Follow steps 1 and 2 there.
Let me know if that works, ive updated the guide's step 1(setting up environment)
Installing the dependencies from this guide was the only thing i didnt test, since i had the CM10 environment set up already
a step is missing from this guide.
adb pull /proc/config.gz ~/kernel/lge-star-kernel-jellybean/config.gz
cat config.gz | gunzip > .config
Click to expand...
Click to collapse
then
mv config arch/arm/configs/<your_config_name>_defconfig
make ARCH=arm CROSS_COMPILE=$CCOMPILER oldconfig
make <your_config_name>_defconfig
make ARCH=arm CROSS_COMPILE=$CCOMPILER menuconfig
Click to expand...
Click to collapse
then continue...
if you don't make the default config the compiler throws out some errors.
ps: nice guide btw
rugglez said:
Git clone size = ~1.5gb
Zip size = 440mb which extracts to that same size
Takes forever to download more than a gig for people like me with slow Internet, no other reason
Click to expand...
Click to collapse
Hmm.. downloading it now and wondering why it's only 120mb, not 440mb as you said.
rugglez said:
Can you install the dependencies from Raum's CM10 building thread here?
Follow steps 1 and 2 there.
Let me know if that works, ive updated the guide's step 1(setting up environment)
Installing the dependencies from this guide was the only thing i didnt test, since i had the CM10 environment set up already
Click to expand...
Click to collapse
Thanks, ok now using your updated guide.
Btw, did you happen to upload a copy of the kernel zip file? Downloading from github takes forever, only 8 kb/s.
aldyu said:
Thanks, ok now using your updated guide.
Btw, did you happen to upload a copy of the kernel zip file? Downloading from github takes forever, only 8 kb/s.
Click to expand...
Click to collapse
Just use "git clone git://github.com/CyanogenMod/lge-kernel-star.git", it should give you better download speed than for the zipped archive.
I synced the whole CM10 source tree on the remote buildbox in about 5-10 minutes - so github does provide great downspeed
@rugglez: You should add to the OP that you don't have to use adb to get the kernel config, it's already there
arch/arm/configs/cyanogenmod_p990_defconfig
Please refer to the old cm7 kernel how to by pastime: http://forum.xda-developers.com/showthread.php?t=1227241
I really like the fact that more and more building guides get posted here - and that more and more people are building their own ROMs and kernels these days.
After building (which already is a great start) many people even want to learn more about android development in general. That's the true xda spirit!
Kudos!
Why would you want to build a kernel yourself?
Click to expand...
Click to collapse
Have you read this: http://forum.xda-developers.com/showpost.php?p=21006133&postcount=1144
In that spirit, I'm going to attempt to write a plain-English tutorial on what to do to build this kernel. In fact, change one or two URLs, and you could build practically any kernel!
Note: I'm assuming you're on a PC here. I'm also assuming this isn't your first trip to linux-land, and you've at least used the terminal a few times before now. I'm also going to assume that even if you are a noob, you're not mentally sub-normal.
Note2: If this is your first time building a kernel, you may want to print this out, and go slowly, and if you get stuck, post about it in the thread! It will help me improve the guide.
What makes this different to other tutorials?
Click to expand...
Click to collapse
I'm a noob at building, but a professional at teaching. It's literally my job! In my noobishness, I made good records of pretty much every step, and I've got lots of time for explaining what each step actually does.
THE STEPS
Got a computer?
Click to expand...
Click to collapse
You'll need one to compile stuff. "For Gingerbread (2.3.x) and newer versions, including the master branch, a 64-bit environment is required." (source)
OK. You're probably thinking of compiling a kernel for ICS or higher right? Is your computer only 32 bit? Pull the processor off the motherboard and count the pins. Just kidding. It won't matter if it is AMD or Intel, but it needs to be a 64 bit processor. I can compile a kernel with just 2GB of RAM and my processor is approaching its 9 year. Even with this lousy set-up, compiling a whole kernel from scratch takes only five minutes.
Install Ubuntu 10.04 64-bit. (Click on this link to download the install CD.)
If you've got a spare hard drive, use the whole thing. If you're good at partitioning, you might consider putting the linux swap partition on a separate disk. You'll want it to be at least 8GB. Putting it on a separate disk will speed things up.
If you don't have a spare disk, you're going to have to resize a partition of an existing OS, to make some new space for Ubuntu. Lets say a minimum of 12GB for the OS plus 8GB for the swap. The more space you can give to the OS, the easier your life will be if you're serious about building stuff.
At the end of the installation it will ask to install a boot-loader. This should be on sda (not sda1!) but you may need to adjust your BIOS to point at the right hard-drive if you later find it doesn't boot into Ubuntu when you restart. Don't worry about Windows, Ubuntu provides a boot menu, so you have the option of booting to Windows instead.
Once Ubuntu is installed, reboot then open a terminal and sort out your credentials:
Code:
sudo passwd root
Type in the password you set during the install, then decide on a password for the root user, and enter it once, then again for confirmation. It can be the same as your user password if you like.
Do some updates (this could take a while):
Code:
sudo apt-get update && sudo apt-get dist-upgrade
When it's finally finished, you'll have to reboot, then repeat until there's no updates left.
You're ready to set up a build environment!
Click to expand...
Click to collapse
First, you need a whole bunch of packages. You could copy and paste this into your terminal:
Code:
sudo add-apt-repository "deb http://archive.canonical.com/ lucid partner" && sudo apt-get update && sudo apt-get install sun-java6-jdk
That's java sorted.
Next up is the dependencies for compiling stuff:
Code:
sudo apt-get install git-core gnupg flex bison gperf build-essential zip curl zlib1g-dev libc6-dev lib32ncurses5-dev ia32-libs x11proto-core-dev libx11-dev lib32readline5-dev lib32z-dev libgl1-mesa-dev g++-multilib mingw32 tofrodos python-markdown libxml2-utils xsltproc libsdl-dev libesd0-dev libwxgtk2.6-dev libncurses5-dev lib32z1-dev gcc-multilib git-core && sudo ln -s /usr/lib32/mesa/libGL.so.1 /usr/lib32/mesa/libGL.so
I think I remember getting an error for one of these. Possibly lib32readline5-dev. If you get that error, make sure you install everything else. Please let me know, and I'll update this step with a fix.
Make sure ADB is initialised:
Code:
gedit /etc/udev/rules.d/51-android.rules
and copy the below into a blank text file, then edit both instances of <username> to your Ubuntu username (lower-case!) and no chevrons: ="<bedalus>" is wrong. You want ="bedalus"
Code:
# adb protocol on crespo/crespo4g (Nexus S)
SUBSYSTEM=="usb", ATTR{idVendor}=="18d1", ATTR{idProduct}=="4e22", MODE="0600", OWNER="<username>"
# fastboot protocol on crespo/crespo4g (Nexus S)
SUBSYSTEM=="usb", ATTR{idVendor}=="18d1", ATTR{idProduct}=="4e20", MODE="0600", OWNER="<username>"
Now save the file!
Get hold of a Cross-Compiler
Click to expand...
Click to collapse
Follow this link to Mentor Graphics Sourcery CodeBench LITE and do a free signup to get the download link. You can get hold of other ones, like Linaro or Google's own, but I'm using this as an example, because it's the one I use, and Ezekeel published some R&D here that showed there was no measurable benefit to one toolchain over another.
When you've downloaded it, you need to copy it to /opt:
Code:
cd /home/<username>/Downloads
cp arm-some-date-some-version-some-arch.tar.bz2 /opt
Note- Obviously that's not the actual name of the file! But you can see what it's really called when you download it.
Now go to /opt and unpack it:
Code:
cd /opt
tar xjf arm-some-date-some-version-some-arch.tar.bz2
So I've got all the tools. Now what?
Click to expand...
Click to collapse
So now you need to get some source code. You can use 'git clone' if you don't plan on publishing your kernel. But if you've made some modifications and want to share your end result, you need to obey the GPL terms for the linux kernel, which is Open Source, meaning that you are required to make your source available publicly.
Go to github: https://github.com/
...and sign up. It's just a free registration provided you are non-commercial. Github has some useful getting started tutorials, which I suggest you follow:
https://help.github.com/articles/set-up-git
(just follow that first page for now. I will walk you through git in a bit...)
Next, fork a repo:
Go to whichever kernel you like: https://github.com/bedalus/bedalusKERNEL
I'm using mine as an example. Look for the big 'Fork' button.
You've now got your own copy on github, and you can do whatever you like with it, without affecting the original.
However, it's no use if it exists only in the cloud. You need to get a local copy. You'll also want something called a 'remote tracking branch', which will enable you to keep up-to-date with the changes going on in the original repository that you have forked-off from.
Critical Step:
Click to expand...
Click to collapse
Shout 'fork-off!' at the top of your voice.
Uh... okay. Now, to get a local copy, and set up your remote-tracking branches, execute:
Code:
cd /home/<username>/
mkdir mykernel
...you can name your new directory whatever you want. It doesn't have to be 'mykernel', then:
Code:
git clone https://github.com/<your github username>/bedalusKERNEL.git
In the above, put your git username, and substitute bedalusKERNEL.git for whatever your fork is called. You can actually copy and paste the URL from the top of your new github repo's page if you want.
It's going to download about 800MB if I remember correctly. This will take a while, so go have some marmite on toast.
When that's done, you're ready for the remote-tracking branch:
Code:
cd bedalusKERNEL (or whatever your fork is called)
git remote add upstream https://github.com/bedalus/bedalusKERNEL.git
git fetch upstream
The 'git remote add upstream' creates a new branch called upstream, and any changes that the original developer uploads to github can be fetched to your machine with the 'git fetch upstream' command. Notice how this time, the download time is much shorter? That's because of 'delta downloads' which only downloads the differences between what you have, and what they have. (There's some technical detail here.)
Git Tip No. 1: What branches do I have?
Click to expand...
Click to collapse
You can now enter:
Code:
git branch
...to see all your branches. At this point there should be 'origin' and 'upstream'.
Git Tip No. 2: How do I change branches?
Click to expand...
Click to collapse
Changing branches (you might as well do this now just to have a little go):
Code:
git checkout upstream
That will move you onto the upstream branch, as long as you haven't made any 'uncommited' changes in origin. (More on that later.) Change back to origin with:
Code:
git checkout origin
Git Tip No. 3: How do I rename a branch?
Click to expand...
Click to collapse
You might want to rename your branches to help personalise them, just to make remembering which is which a little bit easier. To change origin to 'my_version' do this:
Code:
git branch -m origin my_version
You can change upstream to 'their_version' or something else if you want to. It won't stop anything from working.
More Git Tips later. Let's sort out a build script. If you tinker with any code, you'll inevitably break stuff, and need to fix it, and then need to try building again... So, having a build script is going to save you a lot of time, because there are several steps that can be automated.
Here's how the start of my script looks:
Code:
#!/bin/sh
cd /home/dave/mykernel
git branch
read -p "Correct branch? [Y/N]: " -n 1
if [[ ! $REPLY =~ ^[Yy]$ ]]
then
echo -e "\n"
exit 1
fi
This is just a little precaution that I put in to give myself the chance to abort the build before it starts if I'm on the wrong branch. If I don't hit y then the script aborts, and I can checkout the right branch, then restart the script.
Code:
echo -e "\nSTARTING...\n"
The \n prints a new line, then on that new line the message 'STARTING...' and then begins another new line. If you put \n\n you can print a blank line. The echo command is a good way of putting notices in a script so you know what stage it is at.
Code:
export PATH=$PATH:/opt/toolchain/bin/
export ARCH=arm
export SUBARCH=arm
export CROSS_COMPILE=arm-none-eabi-
If you put these lines in your script, it sets 'environment variables' that tells the make program where to find the compiler, and what processor it's compiling for (ARM).
If you now save your script in the /mykernel directory you created earlier, git can keep track of it as well as the files integral to the kernel. Save it as whatever you like, e.g. "myscript.sh"
...It's important to have the .sh extension so the system knows it is a script.
To make your script executable, run:
Code:
chmod a+x myscript.sh
Before you execute the script, you need a .config file in the mykernel directory. If you've cloned my repo, you can get a working one by executing:
Code:
cp arch/arm/configs/crespo_release_defconfig ./.config
...this command will only work properly if you are in the mykernel directory when you execute it.
You can mess with this config file if you like! But it's very easy to break the kernel. However, you can always just copy the crespo_release_defconfig again.
Now, to execute the build script run:
Code:
./myscript
If you execute your script, your compiler will now build the kernel. It will take time, but even on my ten-years-old PC it takes less than ten minutes from scratch.
The compiler will spit out a lot of messages. Most of the time it's telling you that it has compiled an object (i.e. a .o file, which will all be linked up later to form the kernel) and sometimes you'll see warnings, which is the compiler telling you it thinks something might be wrong. Don't worry, most of the time the compiler is just being over-cautious.
If the compiler hits a real problem with the code, it will print an error, and tell you what file, and what line, and how far along that line it managed to get to before it didn't know what to do. I'll get back to this later. For now, let's assume everything compiled.
You'll see a message about the zImage being created. That's the kernel. You can't use it as it is, you need to put it into a boot.img so you can flash it.
I find it useful to add this command in my build-script:
Code:
ls -l /home/dave/mykernel/arch/arm/boot/zImage
ls -l means list with long format. It'll print out the entire contents of a directory with size, time, permissions, etc. if you execute it in a directory, or point it to a directory. However, in the command above, I've pointed it specifically at the zImage file, so it only prints out the details for that. This is so I can check the time. If the time is from yesterday, I can see quickly that there has been an error in the build, and the zImage is still the same one I built yesterday, or an hour ago... etc. depending on the time-stamp printed out.
If you get a 'No such file' error, it's because there is no old zImage, because you haven't ever successfully built one yet.
If you sat and watched the entire thing build, then the timestamp should show the current time, minus a few seconds.
How do I make this zImage into a CWM flashable .zip file?
Click to expand...
Click to collapse
Yay! You've built a kernel. Now you need to make everybody else flash it to their phones too
To do this you need to put it into a boot.img, and then into a .zip file.
Making the boot.img
Click to expand...
Click to collapse
Download this: http://d-h.st/wVZ (make-boot necessary files)
It's a small download. It's some very simple tools that can split an existing boot image into a ramdisk and zImage, and can also stitch them back up.
Move mkboot.zip into your mykernel folder, right click on it, and select 'Extract Here'. You can now delete mkboot.zip. There is a tool called unbootimg, that can take apart existing boot.img files, I've made things simple by including my own ramdisk, which is compatible with AOSP and CM ROMs. That file is called cyan2disk_new.cpio.gz
We now need to add some new stuff to the script to stitch our zImage and ramdisk together.
If you've not already added the ls -l command I mentioned above, also add this now. Then:
Code:
cp /home/dave/mykernel/arch/arm/boot/zImage /home/dave/mykernel/mkboot/
cd /home/dave/mykernel/mkboot
./mkbootimg --kernel zImage --ramdisk cyan2disk_new.cpio.gz --cmdline 'no_console_suspend=1 console=bull's --base 0x30000000 --pagesize 4096 -o boot.img
Remember, your username is not dave! Unless it is. Make the appropriate changes to the path.
How do I make the CWM flashable .zip file?
We're nearly there! This bit is relatively painless. At this point you could save and run the script to check that mkboot is working. If it has worked you can use the same ls -l trick from before, but this time target the boot.img file you just created. If the time-stamp is fresh, it means your boot.img is correct.
TIP: If you haven't switched branches, or run 'make clean', all your .o files are unchanged. The make program keeps track of changes, and only recompiles .o files when the corresponding .c file has been altered. If nothing has changed, your build script will execute very quickly!
To make a flashable .zip file, the easiest thing to do is modify an existing .zip file. You can download my kernel for simplicity, since it already has the necessary script for flashing the entire boot partition. (Most kernels here use koush's any-kernel script, which updates only the zImage and keeps the boot partition's existing ramdisk, so if you try to use another kernel .zip as a template, make sure you correct their updater-script. Using my ramdisk and kernel script will also ensure you keep MTP!)
Once you've downloaded my kernel you should extract it in your home folder, then rename the directory to something like 'myzip'
Now add these lines to your build-script:
Code:
cp /home/dave/mykernel/mkboot/boot.img /home/dave/myzip/boot.img
cp /home/dave/mykernel/drivers/scsi/scsi_wait_scan.ko /home/dave/myzip/system/modules/
"What's that second line? With the .ko file?" I hear you say. Depending on what modules you build, you'll need to copy all of them to the folder specified above. Fortunately, when the kernel finishes building, it tells you what modules have also been built. If you don't want modules in your kernel, you can remove the second line above. However, you must edit your .config file: Open it in gedit, use CTRL+F to open the find dialogue, then type "=m" Now, change every one you find into a "=y" ...so now instead of building modules, the kernel will now incorporate all that code into the zImage instead.
Finally, add this line to your build-script:
Code:
7z a -r -tzip /home/dave/mykernel.zip /home/dave/myzip/*
Run the script again. if everything has gone smoothly, then you now have a flashable .zip in your home directory!
Congratulations!
* * * * * * * * *
More git tips!
Click to expand...
Click to collapse
I've compiled a list of commands you may find handy when getting to know git.
Add a remote branch and track it
git remote add ezekeel git://github.com/Ezekeel/GLaDOS-nexus-s-ics.git
git fetch ezekeel
git checkout --track -b bln ezekeel/bln
Merge in the changes
git merge bln
Resolve conflicts
git mergetool
List local branches
git branch
List remote branches
git branch -r
Switch branch
git checkout branch_name
Rename a branch
git branch -m old_branch_name new_branch_name
View log with short sha1 hash
git log -10 --pretty=format:"%h - %ar: %s"
Restore to a particular point
(IMPORTANT! Don't do this if you've already pushed your commits to github!)
git reset --hard <sha1 hash>
Restore to your last commit
git reset --hard HEAD
Restore to one commit before your last commit:
git reset --hard HEAD^
Restore to two commits before your last commit:
git reset --hard HEAD^^ (etc.)
As long as you haven't pushed to github,
squash all your recent commits into one:
git rebase -i <sha1> ...then change push to squash (or fixup) for all except the first one
git rebase -i --abort (to abort!)
Add .file (i.e. hidden file)
git add .file (simple!)
Add all new and modified files
git add .
Deleting files
(i.e. after doing rm <files>)
git add -u (git will note which files have been deleted)
Bring files from a directory in another branch
git checkout cyanogenmod drivers/cpufreq/
Tells you what changes you've made so far
git status
Commit your changes
git commit (type in your notes about what you did, then CTRL+X then Y to save)
Sync your commits to your github repo
git push <repo_name> <branch_name>
Delete a remote branch
(WARNING: This will delete the entire branch from github
Note: You cannot do this to the default github branch, but you can change the default branch in the admin tab on the website)
git push <repo_name> :<branch to be deleted>
General tips! File management, searching... etc.
Click to expand...
Click to collapse
Find a file (useful for troubleshooting in some situations)
find /home/dave/ -name 'buildlean.sh'
(searches the home folder and subdirectories for 'buildlean.sh')
Find within any *.c file, the text "s5pv210_driver" (good for finding bits of code)
find ./ -type f -name *.c | xargs grep s5pv210_driver
Find within any file, the text "s5pv210_driver" (good for finding bits of code)
find ./ -type f | xargs grep s5pv210_driver
Special Mention : bedalus [Original maker of this Post]. Thank Him Not Me!!
I will not help in this thread as I am not a kernel Dev. I just kanged it here so there Can Be New Developers
Click to expand...
Click to collapse
Click to expand...
Click to collapse
I m getting an error which you've mentioned after applying this code
sudo apt-get install git-core gnupg flex bison gperf build-essential zip curl zlib1g-dev libc6-dev lib32ncurses5-dev ia32-libs x11proto-core-dev libx11-dev lib32readline5-dev lib32z-dev libgl1-mesa-dev g++-multilib mingw32 tofrodos python-markdown libxml2-utils xsltproc libsdl-dev libesd0-dev libwxgtk2.6-dev libncurses5-dev lib32z1-dev gcc-multilib git-core && sudo ln -s /usr/lib32/mesa/libGL.so.1 /usr/lib32/mesa/libGL.so
Click to expand...
Click to collapse
EDIT: page not found https://github.com/bedalus/bedalusKERNEL
l0lh4rd said:
I m getting an error which you've mentioned after applying this code
EDIT: page not found https://github.com/bedalus/bedalusKERNEL
Click to expand...
Click to collapse
Ubuntu??
Which Device??
mithun46 said:
Ubuntu??
Which Device??
Click to expand...
Click to collapse
Ubuntu 12.04 LTS (x64)
l0lh4rd said:
Ubuntu 12.04 LTS (x64)
Click to expand...
Click to collapse
Device???????
@l0lh4rd
Your device probably has different sources. And the page was not found because bedalus doesn't have any public repo by that name anymore.
Below
Sent from my GT-S5360 using xda app-developers app
thanks i'll find a time and try.
I am going to say WOW. Is everyone as lost and confused about what this is or does? I know I am. First off. I think you started off with a very good Tut. The problem is, you never said what you are compiling or what its for. The more advance users can figure it out and actually understand what you said. But what about the n00bs here? If I understand the jibberish you are compiling a Arm kernel off of linux. It would have been more useful if you had mentioned that this is the Arm kernal for the android platform. It would have also been better if you had said what chip your where using. Is this for the Arm5, Arm6, Arm7? You should also give warning about compiling the kernal and how they can screw things up if they don't follow the steps properly and not to skip or try something that is not listed. You also say that you are using Ubuntu, which alot do, but not all. Some use other distro's and that this may not work on all flavors of linux. Some use different commands and some repo's don't work on all distro's either.
Other then that, pretty nice Tut.
mithun46 said:
Have you read this: http://forum.xda-developers.com/showpost.php?p=21006133&postcount=1144
In that spirit, I'm going to attempt to write a plain-English tutorial on what to do to build this kernel. In fact, change one or two URLs, and you could build practically any kernel!
Note: I'm assuming you're on a PC here. I'm also assuming this isn't your first trip to linux-land, and you've at least used the terminal a few times before now. I'm also going to assume that even if you are a noob, you're not mentally sub-normal.
Note2: If this is your first time building a kernel, you may want to print this out, and go slowly, and if you get stuck, post about it in the thread! It will help me improve the guide.
I'm a noob at building, but a professional at teaching. It's literally my job! In my noobishness, I made good records of pretty much every step, and I've got lots of time for explaining what each step actually does.
THE STEPS
You'll need one to compile stuff. "For Gingerbread (2.3.x) and newer versions, including the master branch, a 64-bit environment is required." (source)
OK. You're probably thinking of compiling a kernel for ICS or higher right? Is your computer only 32 bit? Pull the processor off the motherboard and count the pins. Just kidding. It won't matter if it is AMD or Intel, but it needs to be a 64 bit processor. I can compile a kernel with just 2GB of RAM and my processor is approaching its 9 year. Even with this lousy set-up, compiling a whole kernel from scratch takes only five minutes.
Install Ubuntu 10.04 64-bit. (Click on this link to download the install CD.)
If you've got a spare hard drive, use the whole thing. If you're good at partitioning, you might consider putting the linux swap partition on a separate disk. You'll want it to be at least 8GB. Putting it on a separate disk will speed things up.
If you don't have a spare disk, you're going to have to resize a partition of an existing OS, to make some new space for Ubuntu. Lets say a minimum of 12GB for the OS plus 8GB for the swap. The more space you can give to the OS, the easier your life will be if you're serious about building stuff.
At the end of the installation it will ask to install a boot-loader. This should be on sda (not sda1!) but you may need to adjust your BIOS to point at the right hard-drive if you later find it doesn't boot into Ubuntu when you restart. Don't worry about Windows, Ubuntu provides a boot menu, so you have the option of booting to Windows instead.
Once Ubuntu is installed, reboot then open a terminal and sort out your credentials:
Code:
sudo passwd root
Type in the password you set during the install, then decide on a password for the root user, and enter it once, then again for confirmation. It can be the same as your user password if you like.
Do some updates (this could take a while):
Code:
sudo apt-get update && sudo apt-get dist-upgrade
When it's finally finished, you'll have to reboot, then repeat until there's no updates left.
First, you need a whole bunch of packages. You could copy and paste this into your terminal:
Code:
sudo add-apt-repository "deb http://archive.canonical.com/ lucid partner" && sudo apt-get update && sudo apt-get install sun-java6-jdk
That's java sorted.
Next up is the dependencies for compiling stuff:
Code:
sudo apt-get install git-core gnupg flex bison gperf build-essential zip curl zlib1g-dev libc6-dev lib32ncurses5-dev ia32-libs x11proto-core-dev libx11-dev lib32readline5-dev lib32z-dev libgl1-mesa-dev g++-multilib mingw32 tofrodos python-markdown libxml2-utils xsltproc libsdl-dev libesd0-dev libwxgtk2.6-dev libncurses5-dev lib32z1-dev gcc-multilib git-core && sudo ln -s /usr/lib32/mesa/libGL.so.1 /usr/lib32/mesa/libGL.so
I think I remember getting an error for one of these. Possibly lib32readline5-dev. If you get that error, make sure you install everything else. Please let me know, and I'll update this step with a fix.
Make sure ADB is initialised:
Code:
gedit /etc/udev/rules.d/51-android.rules
and copy the below into a blank text file, then edit both instances of <username> to your Ubuntu username (lower-case!) and no chevrons: ="<bedalus>" is wrong. You want ="bedalus"
Code:
# adb protocol on crespo/crespo4g (Nexus S)
SUBSYSTEM=="usb", ATTR{idVendor}=="18d1", ATTR{idProduct}=="4e22", MODE="0600", OWNER="<username>"
# fastboot protocol on crespo/crespo4g (Nexus S)
SUBSYSTEM=="usb", ATTR{idVendor}=="18d1", ATTR{idProduct}=="4e20", MODE="0600", OWNER="<username>"
Now save the file!
Follow this link to Mentor Graphics Sourcery CodeBench LITE and do a free signup to get the download link. You can get hold of other ones, like Linaro or Google's own, but I'm using this as an example, because it's the one I use, and Ezekeel published some R&D here that showed there was no measurable benefit to one toolchain over another.
When you've downloaded it, you need to copy it to /opt:
Code:
cd /home/<username>/Downloads
cp arm-some-date-some-version-some-arch.tar.bz2 /opt
Note- Obviously that's not the actual name of the file! But you can see what it's really called when you download it.
Now go to /opt and unpack it:
Code:
cd /opt
tar xjf arm-some-date-some-version-some-arch.tar.bz2
So now you need to get some source code. You can use 'git clone' if you don't plan on publishing your kernel. But if you've made some modifications and want to share your end result, you need to obey the GPL terms for the linux kernel, which is Open Source, meaning that you are required to make your source available publicly.
Go to github: https://github.com/
...and sign up. It's just a free registration provided you are non-commercial. Github has some useful getting started tutorials, which I suggest you follow:
https://help.github.com/articles/set-up-git
(just follow that first page for now. I will walk you through git in a bit...)
Next, fork a repo:
Go to whichever kernel you like: https://github.com/bedalus/bedalusKERNEL
I'm using mine as an example. Look for the big 'Fork' button.
You've now got your own copy on github, and you can do whatever you like with it, without affecting the original.
However, it's no use if it exists only in the cloud. You need to get a local copy. You'll also want something called a 'remote tracking branch', which will enable you to keep up-to-date with the changes going on in the original repository that you have forked-off from.
Shout 'fork-off!' at the top of your voice.
Uh... okay. Now, to get a local copy, and set up your remote-tracking branches, execute:
Code:
cd /home/<username>/
mkdir mykernel
...you can name your new directory whatever you want. It doesn't have to be 'mykernel', then:
Code:
git clone https://github.com/<your github username>/bedalusKERNEL.git
In the above, put your git username, and substitute bedalusKERNEL.git for whatever your fork is called. You can actually copy and paste the URL from the top of your new github repo's page if you want.
It's going to download about 800MB if I remember correctly. This will take a while, so go have some marmite on toast.
When that's done, you're ready for the remote-tracking branch:
Code:
cd bedalusKERNEL (or whatever your fork is called)
git remote add upstream https://github.com/bedalus/bedalusKERNEL.git
git fetch upstream
The 'git remote add upstream' creates a new branch called upstream, and any changes that the original developer uploads to github can be fetched to your machine with the 'git fetch upstream' command. Notice how this time, the download time is much shorter? That's because of 'delta downloads' which only downloads the differences between what you have, and what they have. (There's some technical detail here.)
You can now enter:
Code:
git branch
...to see all your branches. At this point there should be 'origin' and 'upstream'.
Changing branches (you might as well do this now just to have a little go):
Code:
git checkout upstream
That will move you onto the upstream branch, as long as you haven't made any 'uncommited' changes in origin. (More on that later.) Change back to origin with:
Code:
git checkout origin
You might want to rename your branches to help personalise them, just to make remembering which is which a little bit easier. To change origin to 'my_version' do this:
Code:
git branch -m origin my_version
You can change upstream to 'their_version' or something else if you want to. It won't stop anything from working.
More Git Tips later. Let's sort out a build script. If you tinker with any code, you'll inevitably break stuff, and need to fix it, and then need to try building again... So, having a build script is going to save you a lot of time, because there are several steps that can be automated.
Here's how the start of my script looks:
Code:
#!/bin/sh
cd /home/dave/mykernel
git branch
read -p "Correct branch? [Y/N]: " -n 1
if [[ ! $REPLY =~ ^[Yy]$ ]]
then
echo -e "\n"
exit 1
fi
This is just a little precaution that I put in to give myself the chance to abort the build before it starts if I'm on the wrong branch. If I don't hit y then the script aborts, and I can checkout the right branch, then restart the script.
Code:
echo -e "\nSTARTING...\n"
The \n prints a new line, then on that new line the message 'STARTING...' and then begins another new line. If you put \n\n you can print a blank line. The echo command is a good way of putting notices in a script so you know what stage it is at.
Code:
export PATH=$PATH:/opt/toolchain/bin/
export ARCH=arm
export SUBARCH=arm
export CROSS_COMPILE=arm-none-eabi-
If you put these lines in your script, it sets 'environment variables' that tells the make program where to find the compiler, and what processor it's compiling for (ARM).
If you now save your script in the /mykernel directory you created earlier, git can keep track of it as well as the files integral to the kernel. Save it as whatever you like, e.g. "myscript.sh"
...It's important to have the .sh extension so the system knows it is a script.
To make your script executable, run:
Code:
chmod a+x myscript.sh
Before you execute the script, you need a .config file in the mykernel directory. If you've cloned my repo, you can get a working one by executing:
Code:
cp arch/arm/configs/crespo_release_defconfig ./.config
...this command will only work properly if you are in the mykernel directory when you execute it.
You can mess with this config file if you like! But it's very easy to break the kernel. However, you can always just copy the crespo_release_defconfig again.
Now, to execute the build script run:
Code:
./myscript
If you execute your script, your compiler will now build the kernel. It will take time, but even on my ten-years-old PC it takes less than ten minutes from scratch.
The compiler will spit out a lot of messages. Most of the time it's telling you that it has compiled an object (i.e. a .o file, which will all be linked up later to form the kernel) and sometimes you'll see warnings, which is the compiler telling you it thinks something might be wrong. Don't worry, most of the time the compiler is just being over-cautious.
If the compiler hits a real problem with the code, it will print an error, and tell you what file, and what line, and how far along that line it managed to get to before it didn't know what to do. I'll get back to this later. For now, let's assume everything compiled.
You'll see a message about the zImage being created. That's the kernel. You can't use it as it is, you need to put it into a boot.img so you can flash it.
I find it useful to add this command in my build-script:
Code:
ls -l /home/dave/mykernel/arch/arm/boot/zImage
ls -l means list with long format. It'll print out the entire contents of a directory with size, time, permissions, etc. if you execute it in a directory, or point it to a directory. However, in the command above, I've pointed it specifically at the zImage file, so it only prints out the details for that. This is so I can check the time. If the time is from yesterday, I can see quickly that there has been an error in the build, and the zImage is still the same one I built yesterday, or an hour ago... etc. depending on the time-stamp printed out.
If you get a 'No such file' error, it's because there is no old zImage, because you haven't ever successfully built one yet.
If you sat and watched the entire thing build, then the timestamp should show the current time, minus a few seconds.
Yay! You've built a kernel. Now you need to make everybody else flash it to their phones too
To do this you need to put it into a boot.img, and then into a .zip file.
Download this: http://d-h.st/wVZ (make-boot necessary files)
It's a small download. It's some very simple tools that can split an existing boot image into a ramdisk and zImage, and can also stitch them back up.
Move mkboot.zip into your mykernel folder, right click on it, and select 'Extract Here'. You can now delete mkboot.zip. There is a tool called unbootimg, that can take apart existing boot.img files, I've made things simple by including my own ramdisk, which is compatible with AOSP and CM ROMs. That file is called cyan2disk_new.cpio.gz
We now need to add some new stuff to the script to stitch our zImage and ramdisk together.
If you've not already added the ls -l command I mentioned above, also add this now. Then:
Code:
cp /home/dave/mykernel/arch/arm/boot/zImage /home/dave/mykernel/mkboot/
cd /home/dave/mykernel/mkboot
./mkbootimg --kernel zImage --ramdisk cyan2disk_new.cpio.gz --cmdline 'no_console_suspend=1 console=bull's --base 0x30000000 --pagesize 4096 -o boot.img
Remember, your username is not dave! Unless it is. Make the appropriate changes to the path.
How do I make the CWM flashable .zip file?
We're nearly there! This bit is relatively painless. At this point you could save and run the script to check that mkboot is working. If it has worked you can use the same ls -l trick from before, but this time target the boot.img file you just created. If the time-stamp is fresh, it means your boot.img is correct.
TIP: If you haven't switched branches, or run 'make clean', all your .o files are unchanged. The make program keeps track of changes, and only recompiles .o files when the corresponding .c file has been altered. If nothing has changed, your build script will execute very quickly!
To make a flashable .zip file, the easiest thing to do is modify an existing .zip file. You can download my kernel for simplicity, since it already has the necessary script for flashing the entire boot partition. (Most kernels here use koush's any-kernel script, which updates only the zImage and keeps the boot partition's existing ramdisk, so if you try to use another kernel .zip as a template, make sure you correct their updater-script. Using my ramdisk and kernel script will also ensure you keep MTP!)
Once you've downloaded my kernel you should extract it in your home folder, then rename the directory to something like 'myzip'
Now add these lines to your build-script:
Code:
cp /home/dave/mykernel/mkboot/boot.img /home/dave/myzip/boot.img
cp /home/dave/mykernel/drivers/scsi/scsi_wait_scan.ko /home/dave/myzip/system/modules/
"What's that second line? With the .ko file?" I hear you say. Depending on what modules you build, you'll need to copy all of them to the folder specified above. Fortunately, when the kernel finishes building, it tells you what modules have also been built. If you don't want modules in your kernel, you can remove the second line above. However, you must edit your .config file: Open it in gedit, use CTRL+F to open the find dialogue, then type "=m" Now, change every one you find into a "=y" ...so now instead of building modules, the kernel will now incorporate all that code into the zImage instead.
Finally, add this line to your build-script:
Code:
7z a -r -tzip /home/dave/mykernel.zip /home/dave/myzip/*
Run the script again. if everything has gone smoothly, then you now have a flashable .zip in your home directory!
Congratulations!
* * * * * * * * *
I've compiled a list of commands you may find handy when getting to know git.
Add a remote branch and track it
git remote add ezekeel git://github.com/Ezekeel/GLaDOS-nexus-s-ics.git
git fetch ezekeel
git checkout --track -b bln ezekeel/bln
Merge in the changes
git merge bln
Resolve conflicts
git mergetool
List local branches
git branch
List remote branches
git branch -r
Switch branch
git checkout branch_name
Rename a branch
git branch -m old_branch_name new_branch_name
View log with short sha1 hash
git log -10 --pretty=format:"%h - %ar: %s"
Restore to a particular point
(IMPORTANT! Don't do this if you've already pushed your commits to github!)
git reset --hard <sha1 hash>
Restore to your last commit
git reset --hard HEAD
Restore to one commit before your last commit:
git reset --hard HEAD^
Restore to two commits before your last commit:
git reset --hard HEAD^^ (etc.)
As long as you haven't pushed to github,
squash all your recent commits into one:
git rebase -i <sha1> ...then change push to squash (or fixup) for all except the first one
git rebase -i --abort (to abort!)
Add .file (i.e. hidden file)
git add .file (simple!)
Add all new and modified files
git add .
Deleting files
(i.e. after doing rm <files>)
git add -u (git will note which files have been deleted)
Bring files from a directory in another branch
git checkout cyanogenmod drivers/cpufreq/
Tells you what changes you've made so far
git status
Commit your changes
git commit (type in your notes about what you did, then CTRL+X then Y to save)
Sync your commits to your github repo
git push <repo_name> <branch_name>
Delete a remote branch
(WARNING: This will delete the entire branch from github
Note: You cannot do this to the default github branch, but you can change the default branch in the admin tab on the website)
git push <repo_name> :<branch to be deleted>
Find a file (useful for troubleshooting in some situations)
find /home/dave/ -name 'buildlean.sh'
(searches the home folder and subdirectories for 'buildlean.sh')
Find within any *.c file, the text "s5pv210_driver" (good for finding bits of code)
find ./ -type f -name *.c | xargs grep s5pv210_driver
Find within any file, the text "s5pv210_driver" (good for finding bits of code)
find ./ -type f | xargs grep s5pv210_driver
Special Mention : bedalus [Original maker of this Post]. Thank Him Not Me!!
I will not help in this thread as I am not a kernel Dev. I just kanged it here so there Can Be New Developers
Click to expand...
Click to collapse
excellent but! you will not have a custom kernel. why?
where did "make menuconfig" go?
you selected yes as default, what if i wanted a custom kernel w/o a "Y" for each?
i want to keep my kernel bare minimal. this is not for minimalistic kernel.?
how you pass other kernel params?
you can pass gcc optimizations in -Os but what if i wish to pass it in the kernel build process?
how on earth using this script? can i include firmwares? aka blobwares which are at times ultimate necessity.....?
what if i want to include my patch and the kernel w/o boot w/o special params or switch....?
how do i set the compression params?
well i am still the old school "make menuconfig" and that
cp arch/arm/configs/crespo_release_defconfig ./.config is not my cup of tea. i still like to roll my own kernel the orthodox method, than this automation.
this is okay if you are building your first kernel and you dont know the process. but this is not the right way if you want a complete fine grained inside out control of the device and the kernel.
NOPE NOPE NOPE!
but the git crash course is excellent. i wanted as usual a git flash cards. thanks
+5 to mithun for the git. everything else i found tasty but was a fruit salad, except git tut. which i found very very well documented.
+5 for git. and +1 for the effort for the kernel info.
hope this helps.
thanks
-paul
p.s. very good effort even tho its cut copy paste but the original post didnt address many kernel issues. hope its updated. hope you take it as a positive feedback.
---------- Post added at 03:08 AM ---------- Previous post was at 03:00 AM ----------
TheStrokerace said:
I am going to say WOW. Is everyone as lost and confused about what this is or does? I know I am. First off. I think you started off with a very good Tut. The problem is, you never said what you are compiling or what its for. The more advance users can figure it out and actually understand what you said. But what about the n00bs here? If I understand the jibberish you are compiling a Arm kernel off of linux. It would have been more useful if you had mentioned that this is the Arm kernal for the android platform. It would have also been better if you had said what chip your where using. Is this for the Arm5, Arm6, Arm7? You should also give warning about compiling the kernal and how they can screw things up if they don't follow the steps properly and not to skip or try something that is not listed. You also say that you are using Ubuntu, which alot do, but not all. Some use other distro's and that this may not work on all flavors of linux. Some use different commands and some repo's don't work on all distro's either.
Other then that, pretty nice Tut.
Click to expand...
Click to collapse
thats what i said, how you select the parms and fine controls like choosing the arm arch type. this doesnt do it. it copies the old config. which is excellent for new comers who wants to start to get their feet wet. but if you are building your custom kernel for arm or amd or i386 or mips? this is not at all helpful. if i were a new comer? i could have clicked on the thanks button. for an advanced user? this is a good read/timepass and nothing else. honestly because i got no control. :-s *Unacceptable*
and mithun you should also tell users how to include patches. if you write patches. how will you patch your kernel before you hit make and make bzimage? nope i am sorry this is good for a stock kernel. which has no info about patch and customization this is not complete. edit it and add more info. if you need help. feel free to ask. there are many kernel chaps here.
good luck mithun.
hope this helps.
thanks
-paul
p.s. i am pedantic at times and people hate me for that, but i am sorry i love being a pedantic moron.
Click to expand...
Click to collapse
Click to expand...
Click to collapse
this thread wanst clealry required man as xda-u already has a post regarding this .. so do something useful.most of the steps here are ready made kang stuff .
if my phone doesn't boot up what can be the cause? is there a specific file that i have to look at or not?
matt95 said:
if my phone doesn't boot up what can be the cause? is there a specific file that i have to look at or not?
Click to expand...
Click to collapse
We can never help without logs. But in this case logcat starts after the kernel has been loaded so you need to figure out what's wrong yourself
speed_bot said:
We can never help without logs. But in this case logcat starts after the kernel has been loaded so you need to figure out what's wrong yourself
Click to expand...
Click to collapse
Cause i'm trying to port the Ubuntu touch preview on my HTC One X but id remains on the bootanimation and i think that the problem is with the kernel itself
matt95 said:
Cause i'm trying to port the Ubuntu touch preview on my HTC One X but id remains on the bootanimation and i think that the problem is with the kernel itself
Click to expand...
Click to collapse
Boot anime can't work without a kernel
speed_bot said:
Boot anime can't work without a kernel
Click to expand...
Click to collapse
The problem is that it is stuck at the bootanimation, what can cause this? do you think it could be kernel related?
matt95 said:
The problem is that it is stuck at the bootanimation, what can cause this? do you think it could be kernel related?
Click to expand...
Click to collapse
First up. Does logcat work?
this is what i get
Code:
$ adb logcat
Unable to open log device '/dev/alog/main': No such file or directory
matt95 said:
this is what i get
Code:
$ adb logcat
Unable to open log device '/dev/alog/main': No such file or directory
Click to expand...
Click to collapse
Thanks for Education
A beginners guide to building and modifying a nexus 4 lollipop* kernel from source.
*currently 5.0.1Disclaimer
I am not a developer, nor am I an expert. All the information in here I have gleaned from other sources, credited where possible, so it may not be correct and almost certainly isn't the 'best' way to do things. But it works for me. I hope it works for you but there's no guarantee. Use at your own risk
Assumptions
You have access to a computer running Ubuntu - other distros will probably work but this is the one I'm using. You'll need a basic understanding of the Linux command line including, but not limited to, ls, cp, cd, mkdir, make, ~, sudo, nano and so on.
You'll need to know how to use adb & fastboot to copy stuff into and out of your Nexus 4
A basic undersanding of Git is REALLY helpful if you want to modify your kernel. You'll be able to get by using the comands listed but you really need to have a basic understanding of what Git does if you're going to proceed.
CONTENTS
Initialise your build environment
Downloading the sources
Toolchain
Building
Creating a boot.img
A bit more about Git
Modifying kernels (how I got DT2W working)
Making a flashable zip
Initialise your build envronment
The information for this stage came from: here
I installed Ubuntu 14.04.1 LTS from a scratch. I used VM ware on a Windows laptop but any Linux environment can probably be made to work. So, to start, do an update just to be sure, then install the packages you'll need.
Code:
# sudo apt-get update
# sudo apt-get install bison g++-multilib git gperf libxml2-utils
# sudo apt-get install libncurses5-dev:i386
# sudo apt-get install lib32ncurses5-dev
# sudo apt-get install build-essential kernel-package
Downloads
Most of the really helpful information I've used came from here
I've updated the information slightly and changed the device from Flo to Mako but Pete's page is well worth reading for more background information than I've included here.
To download the source into a 'kernel' folder
Code:
# mkdir ~/android
# cd ~/android/
# git clone https://android.googlesource.com/kernel/msm.git kernel
# cd kernel/
# git branch -a
will show you all the current branches of Mako kernels, choose the one you want and checkout that one.
Code:
# git checkout android-msm-mako-3.4-lollipop-release
Now you need to find out exactly which kernel to build. The 'official' method is here
but that involves a significant download for just a few bytes so I suggest you use the following trick. Go to the pre-built kernel you want to copy here
and you wll see the first line after the header is:-
"16e203d lowmemorykiller: enhance debug information"
You need to make a note of the first seven characters, in this case 16e203d.
Next you need to use Git to create a new branch for our specific kernel. I've called it 'android-lollipop-release'.
Code:
# git checkout -b android-lollipop-release 16e203d
This will extract the source for the kernel we're going to build.
Toolchain
I'm using the stock toolchain (thanks @zaclimon) but will add an alternative suggested by @aviz1911 as time allows.
I'm going to install the toolchain in /usr/local/share but there are other places you could sensibly put it.
Code:
# cd /usr/local/share
sudo git clone [url]https://android.googlesource.com/platform/prebuilts/gcc/linux-x86/arm/arm-eabi-4.7[/url]
Export the path to the toolchain and check it works. Note these exports only work for the current session, if you want to add permanently put it in your .bashrc or .profile
Code:
# export PATH=$PATH:/usr/local/share/arm-eabi-4.7/bin
# cd ~
Test it works with
Code:
# arm-eabi-gcc --version
Now you need to tell the system we want to cross compile.
Code:
# export ARCH=arm
# export SUBARCH=arm
# export CROSS_COMPILE=arm-eabi-
Building
Now you're ready to start.
Code:
#cd ~/android/kernel
# make mako_defconfig
You'll get some warnings like this which you can ignore
warning: (ARCH_MSM_KRAITMP && ARCH_MSM_CORTEX_A5) selects HAVE_HW_BRKPT_RESERVED_RW_ACCESS which has unmet direct dependencies (HAVE_HW_BREAKPOINT)
Code:
# make menuconfig
this is where you can make some changes if you like, we're going to change just the name. Choose General Setup ---> then select
(-perf) Local version - append to kernel release
and change perf to anything you like, I'll use dt2w
Save and exit
Code:
# make -j2
where 2 is twice the number of cores on your machine - there's just one processor on my VM but could be many more on yours. It takes more than half an hour on my machine. Then you should see
Code:
Kernel: arch/arm/boot/zImage is ready
Ta Daaaaa - you have built a kernel - now you need to pack it for testing on your phone.
Creating a boot.img
Again I'm going to use Pete's blog post as my guide but omit some details and just get the job done. I'm not going to explain all the steps, you'll have to investigate yourself if you want to understand more.
Code:
# cd ~/android
# git clone https://github.com/pbatard/bootimg-tools.git bootimg-tools
# cd bootimg-tools/libmincrypt/
# gcc -c *.c -I../include
# # cd ../mkbootimg
# gcc mkbootimg.c -o mkbootimg -I../include ../libmincrypt/libmincrypt.a
# sudo cp mkbootimg /usr/local/bin/
# gcc -o unmkbootimg unmkbootimg.c
# sudo cp unmkbootimg /usr/local/bin/
You need an original boot img to copy so you can insert your new kernel into it. Download the factory image.
Code:
# mkdir ~/android/boot
# cd ~/android/boot
# wget https://dl.google.com/dl/android/aosp/occam-lrx22c-factory-86c04af6.tgz
# tar -xvf occam-lrx22c-factory-86c04af6.tgz
# cd occam-lrx22c/
# unzip occam-lrx22c-factory-86c04af6.zip
# cp boot.img ../
# cd ~/android/boot
Now it's time to unpack the original boot image. unmkbooting will tell you all the parameters you need to repack the boot image with your new kernel inside.
Code:
# unmkbootimg -i boot.img
kernel written to 'kernel' (6009416 bytes)
ramdisk written to 'ramdisk.cpio.gz' (490557 bytes)
To rebuild this boot image, you can use the command:
mkbootimg --base 0 --pagesize 2048 --kernel_offset 0x80208000 --ramdisk_offset 0x81800000 --second_offset 0x81100000 --tags_offset 0x80200100 --cmdline 'console=ttyHSL0,115200,n8 androidboot.hardware=mako lpj=67677 user_debug=31' --kernel kernel --ramdisk ramdisk.cpio.gz -o boot.img
Code:
# cp ~/android/kernel/arch/arm/boot/zImage ~/android/boot/
Repack your new boot image with your new kernel using the information from unmkbootimg
Code:
mkbootimg --base 0 --pagesize 2048 --kernel_offset 0x80208000 --ramdisk_offset 0x81800000 --second_offset 0x81100000 --tags_offset 0x80200100 --cmdline 'console=ttyHSL0,115200,n8 androidboot.hardware=mako lpj=67677 user_debug=31' --kernel zImage --ramdisk ramdisk.cpio.gz -o new_boot.img
Nore that kernel has been changed to zImage and output file has been changed new_boot.img Now it's time to test your new_boot.img by rebooting your phone into bootloader and reboot with the new img.
DO NOT FLASH THE NEW IMAGE.
fastboot boot new_boot.img NOT fastboot flash boot new_boot.img
If all has gone well your phone will now boot with your new kernel. If something has gone wrong just reboot the phone and you'll be back to where you started. If it has all worked then you can flash the new boot image and use that.
A bit more about Git
If like me, you know nothing about Git, then this bit of the guide is for you. If you have basic understanding this will be too simple for you and you'll have to skip this bit and look elsewhere. If you have a basic understanding of any version control software you won't need this either as the necessary commands to complete the next step will be self explanatory.
Jump to the next stage here
Git is a version control system. To understand what it does at a most basic level follow these steps
Code:
# mkdir git_test
# cd git_test
# git init
Tell git who you are. You don't need the inverted commas, just an email address and a name. Keep this information for when/if you open a Github account.
Code:
# git config --global user.email "[email protected]"
# git config --global user.name "Your Name"
create a text file called 'text' with a single line of text that says "This is the first line"
add this file to your git
Code:
# git add text
commit the change with a message
Code:
git commit -m "first line"
create a new branch (checkout -b both creates and makes the new branch current)
Code:
git checkout -b newbranch
edit the 'text' file by adding another line "this is the second line"
add and commit the change to git
Code:
# git add text
# git commit -m "second line"
Then examine the text file, as you might expect it looks like this
Code:
# cat text
this the first line
this is the second line
but if we now go back to the master branch and checkout THE SAME file, we get a different result
Code:
# git checkout master
cat text
this the first line
The second line is not present because it was only added to the 'newbranch' branch. This, it appears to me is the essence of git, it changes files depending on which branch you're viewing them from.
Now we're going to look at how we can use git to extract files from someone else's repository in order to get the files we want for our needs.
There are loads of guides that help you to learn more, I found this video particularly helpful.
https://www.youtube.com/watch?v=1ffBJ4sVUb4
Still to come
Modifying kernels (how I got DT2W working)
Edit:- It's going to be a while before I complete this section as although I managed to build a working kernel I'm pretty sure I didn't do it the 'right' way so I'm reading the Git Pro book.
Will be back later. .. . .
Awesome guide dude. This will surely help a lot of people
Nice
Nice guide, wish you'd have written it a week earlier
Anyways, what i'd really like to know, is how to patch the Linux version properly, because my attempts lead to break the kernel in the process. Didn't get beyond 3.4.11 :/
Hope you can help me out there, buddy.
How to create a zip ?
I have been looking into this and created a kernel a few days ago. But i want to share it.
For that ill have to create a zip. I have searched for it. I think its done using anykernel template.
The issuse is can i use the certificates in the meta-inf folder and the update-binary that is 4 years old ?
Or should i just unzip a kernel , modify the script and place my boot.img.
@aviz1911
Unzipping and re zipping is pretty easy, I'd do that.
@Nicknoxx How's the reading up on git going? Any tips on enabling dt2w would be much appreciated. I've been trying but can't seem to get it to work
I'm really new at the Kernel stuff and just wanted to build stock with dt2w as my first project.
Thanks for the first part of the guide
Wow nice guide sir, i'll try it later
Great Guide!
Thanks Mate!!
what all lines or links should i have to modify if i am building kernel for my device oneplus one lollipop ?
@Nicknoxx
Also @Nicknoxx one can use the -b argument with git while cloning so git just downloads a single branch of the kernel source, this'll save bandwidth and time to some extent
Like
git clone https://android.googlesource.com/kernel/msm.git -bx kernel
Replace x with desired branch name
Click to expand...
Click to collapse
̿ ̿̿’̿’\̵͇̿̿\з==(*͡° ͜ʖ ͡°)==ε/̵͇̿̿/’̿’̿ ̿ ̿̿*
---------- Post added at 08:26 PM ---------- Previous post was at 08:21 PM ----------
Droid.Riz said:
what all lines or links should i have to modify if i am building kernel for my device oneplus one lollipop ?
@Nicknoxx
Click to expand...
Click to collapse
Use the cm kernel source from github.com/CyanogenMod in git clone
Just type
git clone https://github.com/CyanogenMod/android_kernel_oneplus_msm8974 kernel
Click to expand...
Click to collapse
And for compiling
make bacon_defconfig
Click to expand...
Click to collapse
̿ ̿̿’̿’\̵͇̿̿\з==(*͡° ͜ʖ ͡°)==ε/̵͇̿̿/’̿’̿ ̿ ̿̿*
KNIGHT97 said:
Also @Nicknoxx one can use the -b argument with git while cloning so git just downloads a single branch of the kernel source, this'll save bandwidth and time to some extent
Like
̿ ̿̿’̿’\̵͇̿̿\з==(*͡° ͜ʖ ͡°)==ε/̵͇̿̿/’̿’̿ ̿ ̿̿*
---------- Post added at 08:26 PM ---------- Previous post was at 08:21 PM ----------
Use the cm kernel source from github.com/CyanogenMod in git clone
Just type
And for compiling
̿ ̿̿’̿’\̵͇̿̿\з==(*͡° ͜ʖ ͡°)==ε/̵͇̿̿/’̿’̿ ̿ ̿̿*
Click to expand...
Click to collapse
thanks a lot for quick reply i will start it today itself @ night.
after successfully compiling i will reply here
Nice guide. I ad it to my collection. I mis the part about building the modules. For wifi and so on. I think the command is "make modules"
Maby ad some info about updating a kernel. ICS to JB. KK to LP and sow on.
How about the command to clean after building?
[email protected] said:
Nice guide. I ad it to my collection. I mis the part about building the modules. For wifi and so on. I think the command is "make modules"
Maby ad some info about updating a kernel. ICS to JB. KK to LP and sow on.
How about the command to clean after building?
Click to expand...
Click to collapse
Executing the make -j# command automatically builds your modules along with the Zimage, you'll just need to read last few lines in terminal to know the modules and where they reside
̿ ̿̿’̿’\̵͇̿̿\з==(*͡° ͜ʖ ͡°)==ε/̵͇̿̿/’̿’̿ ̿ ̿̿*
Hi guys,
How i can implement this mod/patch in my kernel??
http://forum.xda-developers.com/android/software-hacking/kernel-tap2unlock-tap2wake-feature-t2965344